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38 Abstract  

 

The  need  for  spatial  stock  assessment  models  that  match th e  spatiotemporal  management  and  

biological  structure  of  marine  species  is  growing.  Spatially  explicit,  tag-integrated  models  can  

emulate  complex  population s tructure,  because  they  are  able  to e stimate  connectivity  among  

population u nits  by  incorporating  tag-recovery  data  directly  into th e  combined o bjective  function  

of  the  assessment.  However,  the  limited s cope  of  many  small-scale  tagging s tudies  along  with  

difficulty  addressing m ajor  assumptions  of  tagging  data  has  prevented  more  widespread  

utilization o f  tag-recovery  data  sets  within t ag-integrated  models.  A  spatially  explicit  simulation-

estimation f ramework  that  simulates  metapopulation d ynamics  with t wo p opulations  and ti me-

varying c onnectivity  was  implemented f or  three  life  history  (i.e.,  longevity)  scenarios  to e xplore  

the  relative  utility  of  tagging  data  for  use  in s patial  assessment  models  across  a  range  of  tag  

release  designs  (e.g.,  annual,  historical,  periodic,  and o pportunistic  tagging).  Model  scenarios  

also i nvestigated th e  impacts  of  not  accounting  for  incomplete  tag  mixing  or  assuming a ll  fish  

were  fully  selected  (i.e.,  that  the  age  composition  of  tagged f ish w as  unknown).  Results  

demonstrated th at  periodic  tagging ( e.g.,  releasing t ags  every  five  years)  may  provide  the  best  

balance  between ta g  program c ost  and p arameter  bias.  For  cost-effective  tagging  programs,  tag  

releases  should b e  spread  over  a  longer  time  period in stead o f  focusing  on r elease  events  in  

consecutive  years,  while  releasing  tags  in t andem  with e xisting  surveys  could f urther  improve  the  

practicality  of  implementing  tag-recovery  experiments.  However,  care  should b e  taken t o f ully  

address  critical  modeling  assumptions  (e.g.,  by  estimating  tag m ixing  parameters)  before  

incorporating  tagging  data  into a n a ssessment  model.   
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60 Highlights:  

1.  Including  tagging d ata  improved s patial  assessments  regardless  of  release  design.  

2.  Periodic  releases  balanced t radeoffs  between ta g  program  cost  and p arameter  bias.  

3.  Time-varying m ovement  was  estimable  with i nformative  periodic  tagging d ata.  

4.  Violation o f  tagging  assumptions  increased p arameter  bias  more  than i gnoring  

movement.  

5.  Estimating  tag  mixing  parameters  was  feasible  and e liminated a ssociated b ias.  

 

Keywords:  spatial  models,  tag-integrated m odels,  stock  assessment,  connectivity,  tag-

recovery  population s tructure,  stock  identification,  tag  mixing  
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71 1.   Introduction  

 

In  recent  years,  advocacy  for  the  development  and  implementation o f  spatial  stock  assessment  

models  to s upport  the  often c omplex  network  of  spatiotemporal  fisheries  management  

regulations  has  increased  (Berger  et  al.,  2017;  Punt  et  al.,  2019a,b).  Spatially  explicit  models  can  

directly  account  for  spatial  population s tructure  and c onnectivity,  while  matching  the  scale  at  

which d ata  are  collected  and m anagement  actions  enacted  (Goethel  et  al.,  2011;  Berger  et  al.,  

2017;  Rogers  et  al.,  2017).  However,  the  performance  of  spatial  models  depends  on  

understanding  the  underlying  spatial  structure  to e nsure  independent  population u nits  are  being  

adequately  identified  and  modeled  (Kerr  et  al.,  2016;  Cadrin e t  al.,  2019).  As  the  scale  of  spatial  

assessment  models  becomes  finer,  it  requires  estimating  a  rapidly  increasing  number  of  

additional  parameters  to a ccount  for  connectivity,  independent  recruitment  events,  or  biological  

parameters  for  each p opulation u nit  modeled ( Cope  and P unt,  2011;  Goethel  et  al.,  2011;  Punt,  

2019b).  To m ake  estimation f easible,  spatial  assessments  often u tilize  simplifying  assumptions  

(e.g.,  functional  forms  for  movement;  Carruthers  et  al.,  2015)  or  share  parameters  among  

population u nits,  such a s  productivity  (e.g.,  Punt  et  al.,  2000)  or  selectivity  (e.g.,  Thorson a nd  

Wetzel,  2016).  Simulation te sting  has  demonstrated t hat  models  which d irectly  account  for  

spatial  structure  often  reduce  bias  compared w ith a ssuming  no s tructure  exists  (i.e.,  panmictic  

assessments;  Ying  et  al.,  2011),  implicitly  modeling  spatial  structure  (i.e.,  areas-as-fleets  

assessment  approaches;  Punt  et  al.,  2015,  2016,  2017b,  2018),  or  ignoring m ovement  among  

units  (i.e.,  closed p opulation m odels;  Hulson e t  al.,  2011;  Goethel  et  al.,  2015b;).   
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93 When e xplicitly  incorporating  spatial  structure  within a n a ssessment  model,  it  is  often n ecessary  

to a ccount  for  connectivity  among  population u nits,  even th ough m ovement  parameters  may  be  

poorly  estimated  and im precise  when n o ta gging  data  exist  (Goethel  et  al.,  2015b;  McGilliard  et  

al.,  2015;  Punt,  2018,  2019a).  Parametrizing  and i dentifying  connectivity  dynamics  has  become  a  

focal  issue  for  spatial  assessment  models,  because  misdiagnosing  connectivity  dynamics  can  

result  in a   spatial  model  that  performs  as  poorly  as  nonspatial  assessments  (Goethel  et  al.,  2015b;  

Lee  et  al.,  2017;  Cadrin  et  al.,  2019;  Punt,  2019b).  Early  spatial  assessment  models  relied o n  

external  estimates  of  movement  typically  from ta gging  analyses,  which w ere  then i ncorporated  

into t he  assessment  as  fixed p arameters  (e.g.,  Beverton a nd H olt,  1957;  Quinn e t  al.,  1990).  As  

data  quality  and c omputing  power  have  improved,  connectivity  rates  have  increasingly  been  

treated a s  estimable  parameters.  By  utilizing  integrated a ssessment  models  (Maunder  and P unt,  

2013),  preprocessed d ata  from a   variety  of  auxiliary  sources  can b e  incorporated i n t he  

assessment  utilizing  a  combined o bjective  function t o e stimate  parameters.  For  instance,  tag  

recaptures  can b e  predicted i n a   sub-model  using  the  same  parameter  values  for  both t he  tagged  

and u ntagged p opulations  (e.g.,  Maunder,  1998).  The  combined l ikelihood a pproach o f  

integrated  models  ensures  consistency  of  assumptions  and e nhances  estimates  of  uncertainty  

compared to th  e  discrete  two-step m ethod o f  early  spatial  models  (Maunder  1998,  2001).  

Additionally,  by  incorporating  an  additional  data  source  (i.e.,  tagging  data),  tag-integrated  

assessment  models  utilize  additional  information to h  elp e stimate  important  parameters,  such a s  

fishing  mortality,  natural  mortality,  and,  in s patially-explicit  models,  movement  (Goethel  et  al.,  

2011;  Punt,  2019b).   
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115 Implementing  spatial  tag-integrated  models  can b e  more  demanding  than n onspatial  counterparts  

given t he  increased c omplexity  of  the  modeling  approach a nd  resulting  peer-review  process  

(Berger  et  al.,  2017),  but  assessments  for  a  number  of  marine  species  have  been i mproved  

through a pplication o f  spatially  explicit,  tag-integrated m odels  (e.g.,  Australian s chool  shark,  

Galeorhinus  galeus,  Punt  et  al.,  2000;  South P acific  tunas  using  MULTIFAN-CL,  Hampton a nd  

Fournier,  2001;  and S outh A frican s ardine,  Sardinops  sagax,  de  Moor  et  al.,  2017).  A  number  of  

simulation f rameworks  have  explored th e  performance  of  spatial,  tag-integrated m odels,  

particularly  in c omparison t o s patial  assessments  that  do n ot  use  tagging  information ( e.g.,  

Maunder,  2001;  Hulson e t  al.,  2011,  2013;  Goethel  et  al.,  2015b;  Vincent  et  al.,  2017).  Most  

studies  have  concluded th at,  when a vailable,  tagging  data  can  greatly  improve  the  performance  

of  spatial  assessment  models  by  increasing  the  precision a nd a ccuracy  of  movement  rates  and  

reducing  parameter  confounding  among  recruitment  and c onnectivity  estimates  (Hulson e t  al.,  

2011;  Goethel  et  al.,  2015b;  Cadrin e t  al.,  2019).   

 

However,  the  spatiotemporal  extent  of  tagging  (or  other  auxiliary)  data  needed t o r eliably  

estimate  complex  movement  patterns  in s patial  assessment  models  remains  relatively  unknown.  

Given r esource  limitations  for  fisheries  data  collection a nd a ssessment,  identifying  tradeoffs  

between m odeling  complex  movement  patterns  and t he  extent  of  tagging  data  needed t o i nform  

movement  parameter  estimation is   needed.  A  generalized s patially-explicit  simulation-estimation  

framework  was  developed to d  etermine  the  type  of  data  (e.g.,  tag-recovery  information)  along  

with th e  complexity  of  movement  parametrization  required t o r eliably  estimate  population-

specific  parameters  (e.g.,  biomass  and  fishing  mortality  trends)  in s patial  stock a ssessment  

models.  The  tradeoffs  between th e  cost  of  various  tagging  program  designs  and r esulting  
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138 parameter  bias  in t ag-integrated  models  were  then  identified.  The  framework  involved s imulating  

common f ishery  data  and  a  tag-recovery  study  for  a  two p opulation m etapopulation c onnected  

through t ime-varying  movement,  then a pplying  a  variety  of  spatial  assessment  models  to t he  

simulated p seudo-data  and c omparing  model  performance.  Simulation s cenarios  were  placed i nto  

five  groups  to e xplore  how  1)  tagging  time  series,  2)  tag  deployment,  3)  adherence  to t agging  

data  assumptions,  4)  life  history,  and 5 )  movement  parametrization i mpacted e stimates  from  the  

applied a ssessment  models.  To a ddress  our  objectives,  we  compared  an e stimation  model  that  

incorporated t agging  data  and e stimated m ovement  to o nes  that  did n ot  include  tagging d ata  or  

ignored  movement.  We  also c ompared ta g-integrated m odels  that  utilized p erfectly  implemented  

tagging  studies  to th ose  utilizing  tagging  data  where  important  assumptions  of  the  tagging  

experimental  design w ere  violated ( e.g.,  incomplete  tag  mixing  occurred o r  the  age  of  tagged f ish  

was  unknown).  The  results  of  the  study  provide  new  insight  on t he  role  of  tagging  data  in  

implementing  reliable  spatial  assessment  models,  the  utility  of  different  tag-recovery  

experimental  designs  for  tag-integrated  assessments,  and t he  potential  pitfalls  of  incorporating  

tagging  data  into a ssessments.   

 

2.   Methods  

2.1 O verview  

 

A  simulation-estimation f ramework  was  developed,  wherein c ommon f isheries  data  (e.g.,  fishery  

catch a nd  fishery-independent  survey  information  including  associated a ge  compositions)  and a   

tag-recovery  study  were  simulated w ith m easurement  error.  An a ssessment  (estimation)  model  

was  then f it  to th e  simulated ‘ observed’  pseudo-data  and e stimates  of  parameters  were  compared  

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

156 

157 

158 

159 

160 

7 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

161 to t he  true  values  used i n  the  operating m odel.  To  explore  the  influence  of  the  experimental  

design o f  a  given ta gging s tudy  along  with m odel  assumptions  (i.e.,  of  the  tagging  study  or  the  

assessment  model  spatial  structure)  on  estimation  model  performance,  a  total  of  16 s cenarios  

were  carried o ut  (with a n  additional  56 s cenarios  provided in t  he  supplementary  material).  

Scenarios  were  placed i n  five  groups  (i.e.,  tagging t ime  series,  tag  deployment  protocols,  tag  data  

assumptions,  life  history,  and m ovement  parametrization).  Scenario n ames  are  provided i n i talics  

(and u sed th roughout  the  text)  with f ull  details  of  the  main m odel  runs  provided i n d etail  in  

section 2 .4 ( Simulation S cenarios).  

 

The  operating  model  was  implemented to s  imulate  the  dynamics  of  a  metapopulation ( as  defined  

in G oethel  and B erger,  2017)  consisting  of  two in terconnected p opulations  with d iffering  

demographics  and p roductivity  regimes.  Reproductive  mixing  occurred a mong  populations  

through t he  movement  of  mature  individuals,  but  each p opulation w as  assumed t o  maintain i ts  

own la rval  pool  and s tock-recruit  function.  Instantaneous  box-transfer  movement  was  assumed  at  

the  beginning  of  the  year  and o nce  fish  moved i nto a nother  area  they  assumed t he  reproductive  

dynamics  and d emographics  of  the  population r esiding  in th at  area,  which i mplied t hat  

environment  was  the  main d river  of  life  history  (not  genetics).  Population d ynamics  were  

simulated f or  thirty y ears  starting  from a n i nput  initial  abundance-at-age  and a pplying  random  

annual  deviations  for  recruitment,  fishing  mortality,  and  movement  to e ncapsulate  variation.  

Pseudo-data  were  generated f or  each  year  of  the  model  with  measurement  error  simulated f or  

each d ata  source  using  stochastic  processes  based o n a n a ssumed u nderlying  probability  

distribution.  For  each s cenario,  a  total  of  500 r uns  were  simulated,  and,  for  each r un,  the  data  set  

differed d ue  to th e  realized m easurement  error.  Each r un  maintained t he  same  population  
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184 dynamics  (i.e.,  random  deviations  on p opulation p arameters  were  constant)  and d iffered o nly  in  

the  implemented  measurement  error.  Similarly,  across  all  scenarios,  associated r un n umbers  were  

identical  in t erms  of  both p opulation r andom d eviations  and r ealized  measurement  error  (i.e.,  

across  all  scenarios,  run  number  one  had id entical  population t rajectories  and d ata  sets)  to  

facilitate  comparison a cross  simulation s cenarios.   

 

Spatially-explicit  stock  assessments  were  applied  to t he  various  simulated,  thirty-year  time  series  

of  pseudo-data  (with o r  without  fitting  tag r ecaptures).  The  assessment  models  matched th e  

operating  model  dynamics  except  for  the  parametrization o f  movement,  which v aried  from  

ignoring m ovement  to e stimating  annual  rates.  Error,  precision,  and s tability  were  assessed f or  

each s cenario b ased o n  model  performance  across  all  converged  runs.   

 

The  operating  model  was  described i n G oethel  and  Berger  (2017,  using  the  metapopulation  

configuration)  with t he  addition o f  simulated t ag-recovery  pseudo-data.  The  estimation  models  

were  generalized v ersions  of  those  outlined i n G oethel  et  al.  (2011)  and im plemented in G  oethel  

et  al.  (2015a,b)  with f urther  refinements,  particularly  in t he  handling  of  tagging  data.  Both  

models  were  coded in A  D  Model  Builder  (Fournier  et  al.,  2012)  and c an b e  downloaded  from  the  

Github r epository  (https://github.com/dgoethel/tag-integrated-model).   

 

2.2 O perating m odel  

 

The  two p opulation,  metapopulation o perating m odel  was  parametrized t o s imulate  the  dynamics  

of  a  relatively  short-lived  (plus  group  at  eight  years),  fast  growing  species.  Each p opulation  
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207 maintained t ypical  assumptions  for  species  of  medium  longevity  including  moderate  levels  of  

natural  mortality  (M,  instantaneous  value  of  0.2 a nd 0 .25 f or  population o ne  and p opulation tw o,  

respectively),  interannual  variation in r  ecruitment  (σR,  value  of  0.5 a nd 0 .55  for  population o ne  

and p opulation t wo,  respectively),  connectivity  among  populations  (T,  maximum  annual  

movement  rate  of  20%  and 2 5%  of  the  population  for  population o ne  and p opulation t wo,  

respectively),  and f ishing m ortality  (that  assumed  a  dome-shaped ti me  trajectory).  Simulations  

were  not  meant  to m imic  the  dynamics  of  any  specific  species,  but  were  set  up t o r esemble  

general  biological  dynamics  that  may  apply  to s everal  species  groups  (e.g.,  certain c oastal  

pelagic  species,  tunas,  ground f ish,  or  reef  fish s pecies).  Variation in p  arameters  (along  with  

stock-recruit  relationships)  among  populations  helped e mulate  metapopulation d ynamics,  

because  population u nits  often d emonstrate  unique  demographic  and  reproductive  rates  in  

metapopulation s ystems  (see  Goethel  and B erger,  2017).  The  sequential  order  of  events  in t he  

operating  model  involved:  (1)  spawning;  (2)  recruitment  to t he  population a nd f ishery;  (3)  

release  of  tagged  fish,  if  tagging  takes  place  in th at  year;  (4)  instantaneous  movement  of  tagged  

and u ntagged f ish a mong p opulations;  and ( 5)  continuous  natural  mortality  and r emovals  due  to  

harvest  throughout  the  year,  including  tag  recaptures  with r eporting  rates  of  70%  and 8 0%  (for  

population o ne  and p opulation t wo,  respectively).  For  a  complete  description o f  the  population  

dynamics  see  Supplementary  Material  SM.1 ( including  Table  SM1-2  and  Figures  SM  1-2  for  

operating  model  input  parameters,  as  well  as  Goethel  and B erger,  2017,  including  Figure  2  

therein f or  a  schematic  illustrating  the  population  dynamics).        

 

2.2.1 D ata g eneration  
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230 The  operating  model  produced f ive  population-specific  sets  of  pseudo-data:  (1)  age  compositions  

from  the  catch;  (2)  fishery-independent  survey  age  compositions;  (3)  total  yield;  (4)  fishery-

independent  survey  biomass;  and ( 5)  tag r ecaptures.  Measurement  error  was  incorporated i nto  

each d ata  set  based o n a n u nderlying e rror  assumption ( i.e.,  lognormal  error  for  fishery y ield a nd  

survey  biomass  along  with m ultinomial  error  for  fishery  and s urvey  age  compositions  and t ag  

recapture  states;  Table  1).  For  a  full  description o f  the  pseudo-data  generation p rocess  see  

Supplementary  Material  Section  SM1.3 o n th e  incorporation o f  measurement  error.   

 

Differences  in ta gging e xperimental  design w ere  the  primary  way  in w hich  operating  models  

differed,  particularly  in h ow  tags  were  released  across  years,  populations,  and a ges.  A  multiyear  

Brownie  tagging m odel  (Brownie  et  al.,  1993)  imbedded d irectly  within t he  operating m odel  

simulated th e  tag-recovery  pseudo-data  across  multiple  release  and r ecapture  events  (following  

the  estimation  model  equations  of  Lauretta  and G oethel,  2017).  In e ach  year  of  the  simulation,  a  

new  tag  cohort  could b e  released i nto th e  population,  where  a  cohort  was  defined b y  the  

combination o f  year,  age,  and p opulation o f  release.  The  tag  release  protocol  was  defined b y  a  

combination o f  four  independent  processes:  the  number  of  tags  released,  the  frequency  of  tag  

release  events,  the  population d istribution o f  tags,  and th e  age  distribution  of  tags.  The  sequential  

order  of  tagging  dynamics  involved:  (1)  a  simulated r elease  event  at  the  beginning  of  the  year  

that  defined th e  number  of  fish r eleased i n a   given  cohort;  (2)  instantaneous  movement  post-

tagging,  with p otential  for  incomplete  mixing  of  the  tagged a nd u ntagged p opulation i n t he  year  

of  release  (i.e.,  different  movement  rates  for  tagged f ish);  (3)  continuous  mortality  throughout  the  

year  (with p otential  for  incomplete  mixing  causing  different  fishing  mortality  in th e  year  of  

release),  which  resulted i n r ecaptured t ags  that  were  tallied b y  cohort  and p opulation o f  recapture  
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253 (and a ccounted f or  non-reporting  of  tags);  (4)  repetition o f  this  sequence  in t he  following y ear  

starting  at  step  (2)  for  tagged f ish t hat  survived,  which c ontinued u ntil  a  mortality  event  or  the  

maximum li fe  of  the  tag w as  reached  (see  Supplementary  Material  section  SM.1.3 f or  a  full  

description o f  the  tag  dynamics).   

 

There  were  two t ypes  of  tag  release  designs  in t he  model:  fixed a nd o pportunistic.  A  majority  of  

scenarios  utilized a   fixed d esign w here  a  set  number  of  tags  were  released d uring  each  release  

event,  which o ccurred in   pre-determined  years  and  populations  throughout  the  time  series.  

Opportunistic  tagging  designs  utilized p robability  distributions  to d etermine  whether  a  tag  event  

occurred in a    given  year  (Bernoulli  distribution,  p  =  0.7)  or  population ( Bernoulli  distribution,  p  

=  0.6)  and w ere  also u sed  to s et  the  number  of  tag r eleases  in a   given r elease  event  (uniform  

distribution;  see  Table  SM2 f or  the  inputs  assumed f or  each ta gging  distribution).  The  

opportunistic  tagging  scenarios  were  meant  to e mulate,  for  example,  multiple  patchwork  studies  

over  time  (e.g.,  a  handful  of  independent,  short-term  studies).  Although th e  simulations  do n ot  

account  for  other  potential  issues  with th ese  types  of  tagging  programs  (e.g.,  tagging  only  certain  

age  or  size  classes),  they  provide  insight  to t he  usefulness  of  patchwork  tagging  programs.  

 

For  the  fixed ta gging  designs,  a  total  of  5,000 ta gs  were  released d uring  each r elease  event.  Tags  

were  assigned t o a   release  cohort  by  apportioning  the  total  releases  to  a  population b ased o n t he  

relative  survey  biomass  and d istributing  across  ages  within a   population r elative  to s urvey  age  

compositions  in t he  given p opulation ( see  Table  2  for  the  details  of  the  Base  scenario ta gging  

inputs).  The  tag  deployment  dynamics  were  parameterized s o t hat  the  number  of  tags  was  much  

less  than 1 %  of  initial  population a bundance  and t hat  fish w ere  tagged u sing  the  same  gear  as  the  
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276 survey  resulting  in t he  same  age  distribution.  The  age  of  tagged f ish w as  thus  provided t o t he  

assessment  model  without  error.  Although t hese  assumptions  are  reasonable  for  carefully  

designed t agging  studies,  the  known  age  of  release  assumption w ould b e  more  difficult  to a dhere  

to i n r eal-world s ituations.  Therefore,  a  sensitivity  run w as  explored th at  assumed t he  age  of  

tagged f ish w as  unknown  (see  section 2 .4,  Simulation S cenarios).  

 

Movement  was  assumed  to o ccur  immediately  following  tagging,  which  resulted in t  ags  being  

available  for  recapture  from e ach c ohort  in e ach p opulation i n t he  release  year.  However,  in th e  

year  of  release,  the  model  was  able  to a ccount  for  incomplete  mixing  of  tagged  fish a nd u ntagged  

fish b y  scaling  movement  and f ishing  mortality  by  associated p roportionality  coefficients  (see  

the  tag  data  assumptions  scenarios,  Table  3).  Tag  recaptures  by  cohort  in a   given  year  and  

population w ere  calculated u sing  Baranov’s  catch  equation a ssuming a   continuous  year-long  

process  of  mortality  and  harvest  and d iscounting  tags  for  non-reporting  based o n a   reporting  rate  

parameter.  It  was  assumed t hat  each ta g  had a   lifespan o f  five  years  (after  which,  if  a  tagged  fish  

was  still  alive,  it  was  placed i n th e  not  recaptured  state  for  that  cohort),  and  there  was  no t ag  loss  

or  tag  induced  mortality.  The  basic  tagging  dynamics  were  implemented in a  ll  scenarios  unless  

otherwise  noted i n s ection 2 .4 ( Table  3).  

 

2.2 E stimation m odels  

 

The  estimation m odels  matched t he  operating m odel  parameterization ( including  natural  

mortality  and r eporting  rates  being  fixed a t  the  true  values),  with t he  exception o f  movement  

(estimated i n t wo  year  time  blocks).  Each  estimation m odel  was  implemented u sing  an i ntegrated  
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299 statistical  catch-at-age  framework  (Maunder  and  Punt,  2013)  based o n  a  generalized v ersion o f  

the  assessments  used in   Goethel  et  al.  (2015a,b;  see  section  SM.2 in th  e  Supplementary  Material  

for  a  complete  description o f  the  estimation m odel).  The  variance  terms  and  effective  sample  

size  (ESS)  for  each li kelihood c omponent  were  also t aken  directly  from  the  operating m odel  

(Table  1),  because  error  misspecification w as  not  considered h ere.  Variants  of  the  estimation  

model  included:  (a)  the  Base  scenario m odel  which m atched t he  operating m odel  except  that  

movement  was  estimated  in tw o  year  time  blocks;  (b)  a  spatial  model  which  matched t he  Base  

scenario,  but  did n ot  incorporate  tagging  pseudo-data  (No_Tag);  (c)  a  closed p opulation m odel  

that  treated e ach p opulation a s  independent  units  assuming  no  movement  between th em  

(No_Move);  (d)  the  Base  scenario  model,  but  with  parameters  estimated t o a ccount  for  

incomplete  tag  mixing  (Est_Tag_Mx);  (e)  the  Base  scenario  model,  but  assuming  the  age  of  

tagged f ish w as  unknown  forcing  the  estimation m odel  to f it  age-aggregated ta gging  cohorts  

(No_Age_Tag;  see  Table  3 f or  a  summary  of  scenarios).  

 

2.3 E valuation o f  model  performance  

 

The  performance  of  each  estimation m odel  scenario w as  compared b ased o n b ias  and p recision  

in e stimates  of  population p arameters  (e.g.,  recruitment,  fishing  mortality,  biomass,  and  

movement  rates).  Mean r elative  error  (MRE;  an o verall  measure  of  bias)  and t he  median a bsolute  

relative  error  (MARE;  a  measure  of  bias  and v ariability)  for  a  given m odel  parameter  were  

calculated b y  population a ggregated a cross  the  time  series  (i.e.,  calculated u sing  the  thirty y ears  

of  estimates  across  all  500 m odel  runs  within e ach  scenario).  Model  stability,  an in dicator  of  
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321 over-parametrization a nd  robustness,  was  addressed  by  calculating  the  proportion o f  runs  that  an  

estimation m odel  converged.   

 

2.4 S imulation s cenarios  

 

Model  scenarios  were  placed i n f ive  groups,  which in cluded t agging ti me  series  length,  tag  

deployment  protocols,  tag  data  assumptions,  life  history,  and m ovement  parametrization.  

Scenario n ames  are  provided i n i talics  (and u sed t hroughout  the  remaining te xt)  with f ull  details  

of  the  main m odel  runs  provided i n T able  3.  Additional  sensitivity  runs  are  summarized i n t he  

Supplementary  Material  (Table  SM3).  

 

The  setup o f  the  Base  simulation s cenario ta g  release  design w as  meant  to  balance  the  relative  

cost  of  the  tagging  program  (i.e.,  releasing  tags  every  five  years)  with p arameter  estimation  

performance,  particularly  for  movement  parameters,  to d emonstrate  a  cost-effective  model  of  

intermediate  complexity.  The  parametrization o f  movement  in th e  estimation m odel  balanced  

model  complexity  against  precision o f  parameter  estimates  by  estimating  movement  in t wo-year  

time  blocks  (as  was  suggested b y  Goethel  et  al.,  2015b f or  estimation o f  time-varying m ovement  

in s patial  assessment  models)  instead o f  annually.  Each o f  the  scenario r uns  was  compared to th  e  

Base  model  scenario r esults  to e xplore  how  changes  in th e  tagging  program  or  alternate  

assumptions  impacted e stimation m odel  performance.  

 

Group 1 :  tagging ti me  series  
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344 There  has  been l imited e xploration o f  alternate  tag  release  designs  to d etermine  whether  the  

frequency  and ti ming  (relative  to t he  overall  assessment  time  series)  of  release  events  may  be  

more  important  factors  than o verall  length o f  a  tagging  time  series.  Several  common s hort-term  

tag  release  designs  (e.g.,  releases  over  five  consecutive  years)  were  simulated a nd d iffered  

according  to th e  point  in  the  time  series  at  which t hey  were  implemented [ e.g.,  beginning  

(Tag_Beg_5),  middle  (Tag_Mid_5),  and e nd  (Tag_End_5)  of  the  time  series].  An a nnual  tagging  

time  series  where  tags  were  released e very y ear  (Tag_Yrly)  was  also im plemented.  These  were  

compared w ith  more  unique  designs  that  allowed  for  periodic  tagging,  which w ere  spread o ut  

across  the  entire  time  series  [e.g.,  every  five  years  (Base)  and  every  ten  years  (Tag_Evy_10)].  A  

spatial  model  that  did n ot  incorporate  tagging w as  also im plemented  (No_Tag).   

 

Group 2 :  tag d eployment  

 

Scenarios  also i ncluded d ifferent  design  aspects  for  how  tags  were  released  including  how  tag  

releases  were  distributed  across  populations  [e.g.,  proportional  to s urvey  biomass  by  population  

(Base)  or  releasing  tags  in o nly  one  population ( Tag_Area_2)].  A  fully  opportunistic  tagging  

design w as  also im plemented ( Opp_Tag)  wherein  the  number  of  tags  released w as  defined b y  a  

uniform  distribution,  the  probability  of  a  tag  release  event  in a   given  year  was  determined b y  a  

Bernoulli  distribution ( with p otential  release  event  years  matching  the  Base  scenario),  and t he  

probability  of  a  release  event  occurring  in  a  given  population w as  defined  by  an i ndependent  

Bernoulli  distribution ( see  Table  SM2).  This  release  design  was  meant  to e mulate  a  patchwork  

tagging  program t hat  released ta gs  as  funding  became  available  or  as  a  series  of  pilot  projects  

over  time  with li mited s patial  scale.  
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Group 3 :  tag d ata a ssumptions  

 

Two m ain a ssumptions  of  tag-recovery  data,  complete  mixing  of  tags  and  known  age  structure  of  

tags,  were  explored t o d etermine  how  tag-integrated  models  performed w hen th ese  assumptions  

were  violated.  To e mulate  incomplete  mixing  of  tagged f ish d uring  the  year  of  release,  

simulations  were  implemented w herein t agged  fish w ere  assumed to h  ave  a  much h igher  

residency  (i.e.,  randomly  distributed a round a n a verage  residency  rate  of  90%)  and lo wer  levels  

of  fishing  mortality  (i.e.,  50%  of  the  associated f ishing  mortality  on u ntagged f ish).  Associated  

estimation m odels  then e ither  ignored ta g m ixing  (No_Tag_Mx)  or  estimated i ndependent  

parameters  for  movement  and f ishing  mortality  for  tagged f ish i n t ag  release  years  

(Est_Tag_Mx).  For  the  estimation m odel  that  accounted f or  incomplete  tag m ixing,  cohort-

specific  fishing m ortality  and m ovement  parameters  were  estimated d irectly  for  tagged f ish i n  

the  year  of  release.  

 

The  Base  model  scenario  assumed th at  the  age  composition o f  all  tagged f ish i n a   cohort  was  

known  (e.g.,  by  either  taking  non-invasive  scale  samples  to d etermine  age  directly  or  applying  

age-length  keys  to th e  length c omposition o f  tagged f ish);  however,  directly  aging  tagged f ish i s  

often n ot  feasible,  and a ge-length  keys  may  result  in b iased a ge  composition in formation.  

Therefore,  to p rovide  an  indication o f  the  maximum  bias  that  might  be  expected w hen th e  age  

structure  of  tagged f ish w as  unknown,  the  No_Age_Tag  scenario s imulated  age-based t agging  

dynamics  with t he  associated e stimation m odel  ignoring  age  structure  in t he  tagging  sub-model.  

For  the  estimation  model,  the  input  tag  releases  were  summed a cross  ages,  and t he  model  then  
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390 calculated p redicted t ag-recaptures  assuming  100%  selectivity  and w ith a ge  (i.e.,  the  age  

subscript)  removed  from t he  calculations.  In th e  objective  function,  the  tag-recapture  pseudo-

data  were  summed a cross  ages,  and th e  pooled p seudo-data  was  fit  to t he  tag-recaptures  

predicted b y  the  assessment  model.  The  inherent  process  error  due  to a ge-based t agging  

dynamics  in t he  operating m odel  that  was  not  accounted f or  in th e  estimation m odel  provided  a  

simple  approximation to   the  error  that  might  result  from u nknown a ges  of  tagged f ish.  

 

Group 4 :  life  history  

 

To e nable  moderate  generalization o f  the  findings  beyond th e  single  life  history  utilized f or  all  

other  scenarios,  both lo ng-lived  (LL_Evy_5)  and s hort-lived ( SL_Evy_5)  life  history  scenarios  

were  implemented.  The  long-lived s cenario d oubled th e  number  of  ages  to  sixteen a s  well  as  

doubling  both t he  age  at  50%  maturity  and s electivity  and h alving  the  natural  mortality  to 0 .1.  

On th e  other  hand,  the  short-lived s cenario h alved  the  number  of  ages  to f our  along  with h alving  

the  age  at  50%  maturity  and s electivity,  whereas  natural  mortality  was  doubled.  Both l ife  history  

scenarios  assumed th e  same  tagging  dynamics  as  the  Base  scenario ( i.e.,  releasing  tags  every  five  

years).  Although t he  life  history  scenarios  were  rudimentary  approximations  of  either  fast  

growing  small  pelagics  (i.e.,  the  short-lived s cenario)  or  relatively  slow  growing  ground f ish o r  

deep-water  species  (i.e.,  the  long-lived s cenario),  they  provided a n i ndication o f  the  robustness  of  

the  Base  scenario ta gging m ethodology  across  a  variety  of  life  history  types.  

 

Group 5 :  movement  parametrization  
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413 Several  alternate  movement  parametrizations  were  implemented t o i llustrate  how  ignoring  

movement  (No_Move)  or  assuming  constant  movement  rates  (Cnst_Move)  could p otentially  bias  

resulting  parameter  estimates  compared to e  stimating  movement  in t wo-year  time  blocks  (Base).  

Other  exploratory  scenarios  were  included in t  he  supplementary  material  (see  Table  SM3)  that  

compared h ow  different  movement  parameter  time  blocks  performed [ estimating  yearly  

movement  (Move_Yrly),  estimating  yearly  movement  with  yearly  tag  releases  (Yr_T_Tag_Yr),  

and e stimating m ovement  in f ive  year  time  blocks  (T_Blk_5_Yr)].   

 

2.5 C omparison o f  relative  tag p rogram  cost  

 

The  relative  cost  of  each  tagging e xperimental  design w as  calculated a s  an  approximation o f  

actual  tagging  program c osts  based o n d esign  features  (i.e.,  the  number  of  tags  per  year,  number  

of  populations  in w hich ta gging  occurred,  and n umber  of  years  of  tag r eleases).  Cost  for  each  

tagging  scenario w as  determined r elative  to t he  Base  scenario ta gging  program [ i.e.,  5,000 ta gs  

released e very  five  years  (for  a  total  of  seven  years  of  releases)  across  two p opulations]  where  

each t agging  design  component  (i.e.,  population,  year,  and  every  5,000 t ags  released)  was  

assigned  a  unit  cost  of  one.  Therefore,  the  Base  tagging  scenario ( and b oth lif e  history  scenarios)  

had a   total  cost  of  14 u nits  (two p opulations*seven  years*one  unit  of  tags).  All  other  tagging  

programs  were  scaled u p  or  down b ased o n t he  relative  number  of  populations  and  years  in  

which ta gging  occurred.  The  cost  of  the  opportunistic  tagging  scenario w as  discounted b y  25%,  

because  this  scenario w as  meant  to r epresent  tagging  programs  that  operated a s  opportunity  arose  

(implying a   lower  cost).  Expenses  related t o t ag  recoveries  (e.g.,  advertising  and t ag  rewards)  

were  assumed t o b e  similar  across  tagging  designs,  and t hese  costs  were  not  included.  Plots  were  
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436 then d eveloped to i  llustrate  relative  tag  program  cost  and r esulting  MARE  values  across  tag  

release  scenarios,  which  allowed c omparison o f  the  cost  of  a  tagging  program  versus  the  

expected i mprovement  in t ag-integrated  model  performance.      

 

3.   Results  

Base  scenario p erformance  

 

The  Base  model  scenario  was  first  fit  to th e  simulated p seudo-data  without  measurement  error  as  

both a   self-consistency  run a nd a s  a  basis  of  comparison t o d emonstrate  the  impact  of  

measurement  error  on  model  estimation.  When f it  to p seudo-data  without  measurement  error,  the  

Base  scenario w as  able  to r eplicate  the  population-specific  biomass  trends  almost  exactly  (Figure  

SM2).  Because  movement  was  estimated i n tw o-year  time  blocks,  the  trend t ended t o f ollow  the  

mean l evel  of  movement  across  the  two  years  for  which e ach m ovement  parameter  was  

estimated.  Although t he  pattern r eflected t he  true  movement  dynamics  relatively  well,  the  

estimation m odel  was  not  able  to m atch t he  exact  values  in a ny  given  year  due  to t he  inherent  

mismatch in t  he  operating m odel  and  estimation  model  parameterizations.  However,  the  two-

year  time  block  parametrization o f  movement  performed  much b etter  than  yearly  movement  

estimation,  because  the  latter  was  over-parametrized ( Figure  SM2).   

 

When f it  to p seudo-data  with m easurement  error,  the  Base  scenario a lso p erformed w ell,  but  with  

lower  precision in e  stimates  (Tables  4-5,  Figures  1-2).  Biomass  estimates  over  the  time  series  

were  unbiased ( MRE  near  zero;  Table  4)  with h igh p recision ( MARE  ranged f rom 1 .47 t o 4 .63;  

Table  5,  Figure  1).  Estimation o f  fishing  mortality  in b oth p opulations  demonstrated s light  
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459 overestimation ( MRE  ranged  from  1.48 to 7  .32;  Table  4),  but  high p recision ( MARE  was  

between 6 .09  and 7 .32;  Table  5,  Figure  1).  Population s pecific  recruitment  estimates  tended t o b e  

slightly  overestimated ( MRE  between 1 .86 a nd 7 .16;  Table  4)  with m oderate  imprecision  

(MARE  ranging  from  9.37 t o 1 2.94;  Table  5,  Figure  1).  System-wide  estimates  of  both  

recruitment  and b iomass  tended t o b e  much  more  accurate  and p recise  than  did p opulation-

specific  estimates.  Movement  parameters  were  the  most  biased  (MRE  between 5 .49 a nd 6 .71;  

Table  4)  and i mprecise  (MARE  between 2 2  and 2 5.5;  Table  5,  Figure  1).  Terminal  year  

parameter  estimates  demonstrated h igher  levels  of  bias,  particularly  in p opulation-specific  

recruitment  estimates  where  population o ne  recruitment  tended to b  e  overestimated a nd v ice  

versa  for  population t wo ( Figure  2).   

 

The  Base  scenario d emonstrated l imited p arameter  correlation r esulting  in  high  model  stability.  

Some  minor  correlations  occurred a mong  recruitment  parameters  and  among  initial  abundance  

parameters,  which w as  to b e  expected  given t he  relative  lack  of  information i n t he  data  to  

support  independent  estimation o f  many  of  these  parameters.  However,  these  correlations  did n ot  

influence  model  stability.  The  overall  convergence  rate  of  the  Base  scenario  was  98%  (Table  3).  

High c onvergence  was  common a cross  all  simulation s cenarios  indicating t hat  there  were  no  

major  issues  stemming  from  parameter  correlation  or  general  model  instability.  However,  the  

short-lived l ife  history  (SL_Tag_Evy_5)  scenario  had a   convergence  rate  of  89%,  which w as  

reflective  of  the  difficulty  it  had i n e stimating  movement  parameters.  

 

The  results  of  the  alternate  scenarios  relative  to th e  Base  scenario a re  discussed b y  scenario  

group  with e mphasis  placed o n th e  more  novel  findings.  Results  from  scenarios  not  discussed i n  
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482 the  main t ext  can b e  found in t  he  supplementary  material,  because  these  scenarios  did n ot  add  

significantly  to t he  primary  findings  or  simply  supported c onclusions  from  previous  studies  

(Figures  SM3-SM10).   

 

Group 1 :  tagging ti me  series  

 

The  model  without  tagging  data  (No_Tag)  demonstrated h igh i mprecision i n p arameter  

estimates,  most  noticeably  in  movement  rates  (MARE  of  72 t o 9 1;  Table  5,  Figures  1-2).  

Similarly,  levels  of  bias  for  fishing  mortality  in p opulation o ne  increased ( MRE  of  14.6;  Table  4)  

compared to th  e  Base  scenario.  However,  estimates  of  biomass  were  relatively  unbiased ( MRE  

ranged f rom - 1.36 t o 2 .96),  albeit  with h igher  imprecision t han t he  Base  scenario ( MARE  ranged  

from  1.88 to 8  .57;  Tables  4-5).  Although t he  no t agging m odel  did n ot  have  convergence  issues,  

there  was  strong c orrelation b etween  and a mong m ovement  and r ecruitment  parameters  that  

caused s ome  runs  to e stimate  zero  recruitment  in a n  area  with a   correspondingly  inflated  

movement  of  fish in to t hat  area  (i.e.,  all  recruitment  was  in o ne  population w ith h igh e migration  

from  that  population t o a llow  those  recruits  to t hen i nhabit  the  other  population;  Figure  3).  

Tagging m ore  frequently  (i.e.,  the  Tag_Yrly  scenario)  slightly  reduced b ias  and im precision,  

whereas  tagging  less  frequently  (Tag_Evy_10)  had  the  converse  effect,  although n either  scenario  

demonstrated p atterns  that  differed  greatly  from  the  Base  scenario.  Short-term,  clumped t agging  

programs  (i.e.,  Tag_Beg_5,  Tag_Mid_5,  and T ag_End_5)  all  performed s imilarly  with  generally  

elevated b ias  and i mprecision c ompared t o t he  Base  scenario ( Tables  4-5,  Figures  1-2).  Tagging  

at  the  end o f  the  time  series  resulted i n h igher  parameter  bias  across  the  time  series  (e.g.,  in  
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504 population o ne  fishing  mortality;  Figure  1),  yet  better  terminal  year  estimates  of  fishing  mortality  

and m ovement  (Figure  2).   

 

Group 2 :  tag d eployment  

 

Tagging o pportunistically  (Opp_Tag)  led t o s imilar  performance  as  the  Base  scenario,  but  with  

increased l evels  of  bias  and im precision in t  erminal  year  estimates  (Figure  2)  and m ovement  

parameter  values  (MARE  between 4 4  and 4 7;  Tables  4-5;  Figure  1).  Tagging  only  in p opulation  

two ( Tag_Area_2)  performed s imilarly  to t he  Opp_Tag  scenario,  but  with i mproved  movement  

estimates  (even  compared to th  e  Base  scenario;  MRE  ranged f rom  -3.07 t o 1 .67)  and in creased  

bias  in p opulation tw o r ecruitment  (MRE  =  18.19;  Tables  4-5,  Figures  1-2).   

 

The  impact  of  tagging  data  and a ssociated ta g  release  design w as  most  clearly  demonstrated b y  

looking  at  the  time  series  of  movement  estimates,  recruitment,  and  fishing  mortality  (Figure  3).  

Without  tagging  data  (No_Tag),  the  model  was  not  able  to a ccurately  estimate  movement  rates,  

which le d t o a   number  of  runs  estimating  zero r ecruitment  in a   given a rea,  whereas  the  reduced  

information o n m ortality  rates  caused b y  not  having  tagging  data  led t o h igher  imprecision in   

fishing  mortality.  The  addition o f  tagging  data  (e.g.,  the  Base  scenario)  immediately  improved  

movement  estimates  starting  in t he  first  year  of  release  and  extended f or  the  assumed li fespan o f  

tags  (i.e.,  five  years)  with d ecreasing  impacts  as  fewer  tags  remained in t  he  system.  The  

immediate  effect  was  most  clearly  seen  for  the  Tag_Mid_5  and  Opp_Tag  scenarios  wherein  

movement  parameters  were  highly  imprecise  until  a  release  event  occurred,  while  the  precision  

slowly  decreased f ollowing  a  release  event  (Figure  3).  Similarly,  precision  and a ccuracy  of  both  
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527 recruitment  and  fishing  mortality  were  improved  in  years  immediately  following  a  release  event.  

The  periodic  release  design ( i.e.,  releasing  tags  every  five  years)  of  the  Base  scenario a llowed  

moderately  precise  movement  parameters  estimates,  while  providing  high a ccuracy  and p recision  

of  other  model  parameters  over  the  entire  time  series  (Figure  3).  Although t he  annual  tagging  

model  (Tag_Yrly)  greatly  increased t he  precision o f  the  movement  parameters,  the  overall  

improvement  in o ther  median p arameter  estimates  was  minimal  compared t o t he  Base  scenario.   

 

Group 3 :  tag a ssumptions  

 

Violation o f  the  tag  model  assumptions  led t o t he  worst  performing m odels  in t his  study.  For  the  

model  in w hich t ag a ge  was  unknown ( No_Age_Tag),  bias  levels  were  high w ith f ishing  

mortality  being  underestimated  (MRE  between - 1  and - 15),  which  caused b iomass  estimates  to  

be  overestimated  (MRE  ranged f rom  3.5 to 1  4)  and l ed to in  creased im precision c ompared t o th e  

Base  scenario ( Tables  4-5,  Figures  1-2).  Not  accounting  for  incomplete  mixing  when it   was  

taking  place  (No_Tag_Mx)  led t o s imilar,  but  less  extreme  patterns  in p arameter  bias  and  

precision a s  the  No_Age_Tag  scenario ( population s pecific  biomass  MRE  was  between 9 a  nd 1 3  

with f ishing  mortality  MRE  ranging f rom  -6 to -  14;  Tables  4-5,  Figures  1-2).  The  Est_Tag_Mx  

model  was  able  to a ccurately  estimate  the  scalars  on f ishing  mortality  (FMIX)  and t he  new  

movement  rates  for  tagged f ish in e  ach  year  of  release,  which r esulted i n c omparable  parameter  

bias  to t he  Base  scenario  with o nly  moderately  increased i mprecision ( e.g.,  movement  rate  

MARE  around 3 1;  Tables  4-5,  Figures  1-2).  Ignoring  incomplete  mixing  (i.e.,  the  No_Tag_Mx  

scenario)  caused s evere  underestimates  of  fishing m ortality  in r elease  years  leading  to  

overestimation o f  biomass  (Figure  SM3).  Conversely,  when t he  model  was  allowed to e  stimate  

528 

529 

530 

531 

532 

533 

534 

535 

536 

537 

538 

539 

540 

541 

542 

543 

544 

545 

546 

547 

548 

549 

24 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

550 the  scalar  on  fishing  mortality  (i.e.,  the  Est_Tag_Mx  scenario)  to a ccount  for  incomplete  mixing,  

the  bias  was  removed ( Figure  SM3).   

 

Group 4 :  life  history  

 

Both th e  short-lived ( SL_Tag_Evy_5)  and l ong-lived ( LL_Tag_Evy_5)  life  history  scenarios  

performed s imilarly  to t he  Base  scenario ( Figures  1-2).  Although th e  short-lived s cenario  

actually  demonstrated lo wer  bias  compared t o t he  Base  scenario f or  some  parameters  (e.g.,  MRE  

in f ishing  mortality  ranged f rom - 1.77 t o 2 .2;  Tables  4-5),  it  was  unable  to a ccurately  estimate  

movement  rates  demonstrating  higher  bias  and i mprecision ( MRE  ranged f rom  18.74 t o 3 2.51  

and M ARE  ranged  from 3 0.81 t o 3 3.17;  Tables  4-5).  The  long-lived s cenario h ad s lightly  

increased b ias  compared  to t he  short-lived s cenario,  but  precision w as  generally  higher,  

particularly  in e stimates  of  movement  rates  (MARE  ranged f rom  18.83 to   22.88;  Table  4).   

 

Group 5 :  movement  parametrization  

 

Ignoring  movement  (No_Move)  was  detrimental  to m odel  performance  leading  to i naccurate  

estimates  of  important  parameters,  including  population-specific  biomass  (MRE  ranging f rom  -

6.5 f or  population o ne  to  13.14 f or  population t wo;  Table  4),  particularly  in  the  terminal  year  

(Figure  2);  however,  system-wide  values  tended t o b e  relatively  well  estimated ( e.g.,  biomass  

MRE  =  1.43 a nd r ecruitment  MRE  =  1.73;  Tables  4-5,  Figures  1-2).  The  constant  movement  

scenario ( Cnst_Move)  performed w ell  with o nly  slight  increases  in b ias  and  imprecision  

compared to th  e  Base  scenario ( Tables  4-5,  Figures  1-2).   
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Comparison o f  relative  tag p rogram  cost  

 

Tagging e very  five  years  (i.e.,  the  Base  scenario)  provided a n a dequate  balance  between a   

relatively  inexpensive  tagging  program ( compared t o a nnual  tagging,  Tag_Yrly)  and l ow  

resulting  MARE  for  many  population p arameters  compared to le  ss  resource  intensive  tagging  

programs  with f ewer  release  events  [e.g.,  tagging e very  ten  years  (Tag_Evy_10),  tagging  in o nly  

one  area  (Tag_Area_2),  or  opportunistic  tagging  (Opp_Tag);  Figure  4].  However,  less  intensive  

and e asier  to im plement  (and m aintain)  tag  designs,  such a s  opportunistic  tagging  (Opp_Tag),  

resulted in o  nly  a  moderate  increase  in M ARE  with c onsiderable  cost  savings.  

 

4.   Discussion  

 

Modeling  complex  spatial  dynamics  in s tock  assessment  models  likely  requires  some  form o f  

auxiliary  information,  such a s  tag-recovery  data,  to i nform c onnectivity  and a dequately  estimate  

population tr ajectories.  Previous  spatially  explicit  tag-integrated s imulation  studies  have  focused  

on t agging  data  quality  and q uantity  (e.g.,  Hulson  et  al.,  2011,  2013;  Goethel  et  al.,  2015b;  

Vincent  et  al.,  2017),  but  our  results  indicate  that  the  frequency  and d istribution o f  tag  releases  

over  time  and s pace  may  be  as  important  for  achieving  accurate  and p recise  parameter  estimates.  

Longer  time  series  of  data  inputs  for  an a ssessment,  particularly  tagging  data,  usually  results  in  

improved  model  performance  (Goethel  et  al.,  2015b).  However,  in t he  case  of  collecting  tagging  

data,  there  are  other  factors  (e.g.,  funding,  weather,  or  availability  of  boat  time)  that  may  limit  

the  ability  to r elease  and  recapture  tagged f ish e very y ear  and a t  all  locations.  Most  tagging  
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596 studies  do n ot  match t he  spatial  extent  of  the  population o r  the  longevity  of  the  species,  because  

they  are  typically  financed b y  short-term g rants.  Given th ese  common c ircumstances,  our  results  

provide  an e xploration o f  tradeoffs  among  tagging d esign c ost  and t he  expected b enefits  in te rms  

of  tag-integrated a ssessment  model  performance  (Figure  4).   

 

Our  simulation s cenarios  were  limited i n t heir  exploration o f  process  error  and s patiotemporal  

complexity  (including  the  form  of  underlying m ovement  dynamics)  resulting  in u ncertainty  

estimates  that  are  likely  to b e  severely  underestimated w hen  compared t o  real  world a pplications  

of  spatial  assessment  models  (e.g.,  when  connectivity  and ta gging  occur  across  entire  ocean  

basins).  Despite  these  caveats,  there  were  a  number  of  general  results  that  are  likely  to b e  useful  

in f uture  applications  of  tag-integrated a ssessments.  For  instance,  when t ag r eleases  were  spread  

across  the  assessment  time  series,  the  information c ontent  in ta g  recaptures  improved p arameter  

estimates  for  the  entire  length o f  the  assessment  period.  Tag  releases  were  not  required e very  

year,  though,  given th at  the  Base  model  scenario,  in w hich t agging  occurred e very  five  years,  

demonstrated s imilar  performance  to m ore  frequent  tag  release  scenarios  (e.g.,  annual  tag  

releases,  Tag_Yrly).  Performing  periodic  release  events  provides  a  tag  recapture  time  series  of  

sufficient  length t o i mprove  assessment  outputs  at  a  substantial  cost  savings  over  annual  tagging  

studies.  These  results  also h eld a cross  multiple  life  history  types  (e.g.,  short-,  medium-,  and lo ng-

lived s pecies)  indicating s ome  degree  of  generalization w as  possible.    

 

Releasing  tags  opportunistically  across  both  years  and p opulations  (Opp_Tag)  provided a ccurate  

parameter  estimates  at  a  substantially  reduced c ost  of  the  tagging  program c ompared t o  

traditional  fixed t ag  release  designs  (due  to r eleases  not  occurring  in e very  population a nd  
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619 potential  release  year).  Although a ny  tag  study  must  still  adhere  to t he  major  assumptions  for  

utilizing  tagging  data,  these  results  indicate  that  tagging  studies  of  limited s cope  (e.g.,  pilot  

studies  or  opportunistic  tagging a s  funding  becomes  available)  could s till  provide  useful  data  for

tag-integrated  models.  Similarly,  tagging  in o nly  a  single  spatial  unit  (e.g.,  the  Tag_Area_2  

scenario)  can  also b e  informative.  However,  when  there  are  spatial  tag  deployment  limitations  it  

may  be  better  to ta g  in t he  smaller,  less  productive  population u nit  (see  results  for  the  

Tag_Area_2  scenario  compared w ith th ose  from t he  Tag_Area_1  scenario  in t he  Supplementary  

Material).  By  doing  so,  a  stronger  signal  is  provided r egarding  the  emigration r ates  from a nd  

fishing  mortality  on th e  less  productive  population.  Information o n t he  population t rajectories  of  

less  productive  population u nits  are  important  for  spatial  models,  because  signals  in o ther  data  

sources  (e.g.,  landings  and a ge  composition)  are  often i nundated b y  the  larger  population  

components  (Goethel  et  al.,  2015b;  Vincent  et  al.,  2017).   

 

Short-term  tagging  studies  (e.g.,  one  time  or  clumped r elease  events)  provide  bursts  of  

information t o t he  assessment  that  help s tabilize  the  model  by r educing c orrelation a mong  

movement  and r ecruitment  parameters  (Goethel  et  al.,  2015b;  Cadrin e t  al.,  2019).  However,  

results  indicated t hat  a  better  use  of  funding  for  tagging  programs  would b e  to s pread r elease  

events  over  a  longer  time  period i nstead o f  implementing  a  limited n umber  of  release  events  in  

consecutive  years.  For  instance,  the  main r eason t hat  the  opportunistic  tagging  study  performed  

well  was  because  tag r eleases  occurred  across  the  time  series,  thereby  providing  information  

from m ultiple  periods  compared t o t he  brief,  single  period s napshots  provided b y  short-term  

studies.  Given th at  many  tag  programs  are  funded  by  short-term g rants,  it  may  be  difficult  to  

optimize  release  designs  in t his  way.  Ideally,  complimenting  survey  data  by  conducting  
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642 intermittent  tag  release  programs  as  part  of  existing  survey  designs  (e.g.,  as  is  done  with A laskan  

sablefish;  Hanselman e t  al.,  2015)  may  produce  the  highest  return o n i nvestment  for  funding  

agencies  and w ould p rovide  much n eeded in formation  on m ovement  that  surveys  alone  often  

cannot  provide.  Identifying  alternate  data  sources  that  can in form c onnectivity  and b e  collected  

as  part  of  survey  protocols  (e.g.,  natural  tags,  genetic  information,  or  otoliths),  as  was  done  for  

South A frican s ardine  using  parasite  infestation r ates  (de  Moor  et  al.,  2017),  provides  a  cost-

effective  alternative  to i mplementing  tagging  programs.  However,  there  may  be  unaccounted f or  

costs  (e.g.,  advertising)  or  impediments  (e.g.,  time-varying  reporting  rate)  to m aintaining  a  

longer  time  series  of  recaptures,  which w ere  not  addressed i n t his  study  and w ould n eed t o b e  

considered f or  long-term p eriodic  tagging  programs.   

 

Lack  of  tagging d ata  (i.e.,  the  No_Tag  scenario)  degraded p erformance  compared to m  ost  of  the  

models  that  included s ome  form  of  tagging  information.  However,  population-specific  parameter  

estimates  were  still  relatively  unbiased.  The  main  detriment  was  increased i mprecision,  which  

corroborates  earlier  studies  comparing  tag-integrated a nd s patial  models  without  tagging  data  

(e.g.,  Hulson e t  al.,  2011;  Goethel  et  al.,  2015b).  As  discussed i n d epth i n G oethel  et  al.  (2015b)  

and C adrin e t  al.  (2019),  the  primary  issue  with s patial  models  that  lack  tagging  data  is  that  

recruitment  and  movement  parameters  often b ecome  highly  correlated.  Although s patial  models  

without  tagging  information o ften o utperform s imilar  models  that  assume  no m ovement  (as  was  

the  case  when c omparing t he  No_Move  and  No_Tag  scenarios;  Goethel  et  al.,  2015b;  McGilliard  

et  al.,  2015;  Punt,  2019a),  results  often d epend o n  the  existence  of  high q uality  age  composition  

data  to i nform  movement  parameter  estimation i n t he  spatial  models.  When  age  composition d ata  

are  of  poor  quality  (e.g.,  the  No_Tag_LQ  scenario  provided i n t he  supplementary  material),  
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665 estimating  the  parameters  of  a  spatial  model  without  tagging  data  may  be  more  detrimental  than  

ignoring m ovement,  because  there  is  increased p robability  of  high e stimation b ias  and m odel  

instability  (e.g.,  high p arameter  correlation le ading  to u nrealistic  outcomes).  The  benefit  of  age  

composition d ata  could a lso b e  seen in th  e  life  history  runs  where  the  short-lived l ife  history  

scenario h ad a   more  difficult  time  estimating m ovement  rates  compared t o  the  medium- (i.e.,  

Base)  and l ong-lived s cenarios.  These  estimation  difficulties  are  believed t o b e  partly  due  to t he  

relative  lack  of  information c ontained in t  he  condensed ( i.e.,  fewer  age  classes)  age  compositions  

available  for  short-lived  species,  but  was  also i nfluenced b y  each  cohort  only  experiencing  on  

average  one  tag r elease  event  (i.e.,  the  average  life  span w as  four  years,  whereas  the  tag  

frequency  was  every  five  years).   

 

Mis-specifying  movement  parametrization ( e.g.,  assuming  constant  movement  when i t  is  actually  

time-varying)  can b e  as  detrimental  as  ignoring  movement  altogether  or  implicitly  accounting  for  

spatial  dynamics  through  areas-as-fleets  models  (Hulson e t  al.,  2013;  Goethel  et  al.,  2015b;  Lee  

et  al.,  2017;  Li  et  al.,  2018).  The  constant  movement  (Cnst_Move)  scenario  in th e  current  study  

performed  moderately  well,  albeit  with s trong  cyclical  bias  in b iomass.  Because  there  was  not  a  

strong  trend o ver  time  in  movement  rates  in t he  operating  model,  the  constant  movement  model  

was  not  penalized  for  its  inability  to  estimate  annual  deviations  in t he  movement  rates.  

Additionally,  ignoring m ovement  (e.g.,  the  No_Move  scenario)  may  lead t o  reasonable  estimates  

of  total  biomass,  which s uggests  that  panmictic  assessments  could  also p rovide  adequate  domain  

scale  estimates  (e.g.,  Li  et  al.,  2015).  However,  the  situations  for  which i ndividual  population  

dynamics  and c onnectivity  could b e  ignored a re  likely  to b e  limited  given t he  potential  for  
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687 depletion o f  population c omponents  (Ying e t  al.,  2011;  Goethel  et  al.,  2011;  Guan e t  al.,  2013;  

Kerr  et  al.,  2016;  Punt  et  al.,  2018).   

 

Given th e  relatively  simple  simulated  movement  dynamics  (i.e.,  time-varying  without  trend)  

compared to th  e  often c omplex  ontogenetic  patterns  observed in r  eal-world  applications,  the  

results  of  this  study  are  likely  to b e  overly  optimistic.  For  instance,  if  age-based m ovement  

occurs,  it  is  likely  that  estimating  movement  for  long-lived s pecies  will  be  much  more  difficult  

given t he  greatly  increased n umber  of  movement  parameters  that  would n eed t o b e  estimated.  

Therefore,  future  research s hould f urther  investigate  the  feasibility  of  estimating m ore  complex  

movement  dynamics  with li mited o r  no t agging  information a long  with t he  associated b ias  from  

ignoring  age- and ti me-varying m ovement,  given  that  connectivity  dynamics  are  unlikely  to b e  

static  across  either  time  or  age.   

 

The  benefits  of  including  tagging  data  in a n a ssessment  must  be  weighed a gainst  the  increase  in  

the  number  of  parameters  to b e  estimated  and t he  potential  for  violation o f  critical  tagging  

assumptions.  For  instance,  in t he  scenarios  where  the  age  of  tagged f ish w as  unknown  

(No_Age_Tag)  or  incomplete  mixing  was  ignored  (No_Tag_Mx),  incorporating  tagging  data  led  

to b iased m odels  that  often p erformed w orse  than  not  including  any  tagging  data.  These  results  

are  important  because  many  tagging  studies  do n ot  have  exact  age  at  release  information,  and  

homogenous  mixing o f  tagged i ndividuals  across  large-scale  spatial  domains  is  effectively  

impossible.  Additionally,  it  is  difficult  to f ully  verify  or  fulfill  all  of  the  assumptions  of  tag-

recovery  data  (e.g.,  that  the  dynamics  of  the  tagged f ish a re  representative  of  the  general  

population o r  that  the  age  composition o f  tagged  fish a nd t he  untagged p opulation o verlap  
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710 appropriately;  Ziegler,  2013).  More  research is   also n eeded o n b est  practices  for  incorporating  

tagging  data,  particularly  with r egard to d  ata  weighting  (Punt,  2017a)  and  accounting f or  over-

dispersion c aused b y  non-independence  of  sampled ( tagged)  fish  (i.e.,  using  alternate  likelihood  

functions;  Hanselman e t  al.,  2015).  

 

However,  many  tagging d ata  assumptions  can b e  directly  accounted f or  by  adjusting  the  

parametrization o f  tagging m odels.  For  instance,  it  is  common p ractice  for  tagging m odels  to  

estimate  tag m ixing  parameters  (as  was  done  in t he  Est_Tag_Mx  scenario;  e.g.,  Hoenig  et  al.,  

1998;  Hampton a nd  Fournier,  2001;  Waterhouse  and H oenig,  2011).  External  analyses  can a lso  

be  performed t o a ddress  tag  mixing  assumptions  (e.g.,  Kolody  and H oyle,  2015)  and t ag  

recaptures  that  are  deemed to h  ave  been  at-large  for  too s hort  a  time  period t o u ndergo f ull  

mixing  with n on-tagged f ish c an b e  removed ( e.g.,  Punt  et  al.,  2000).  Similarly,  the  bias  

associated w ith th e  No_Age_Tag  scenario is   likely  to b e  extreme,  because  information o n th e  age  

composition o f  tagged  fish c an o ften b e  derived b y  taking  scale  samples  of  all  tagged f ish o r  by  

collecting  otoliths  of  recaptured f ish.  The  lengths  of  tagged f ish c an th en b e  assigned t o a n a ge  

class  using  age-length  keys  [as  is  done  in M ULTIFAN-CL  (Hampton a nd  Fournier,  2001)  and  

other  applied t ag-integrated m odels  (e.g.,  Cadigan,  2016;  ICES,  2017)],  thereby  avoiding  the  full  

selection a ssumption o f  the  No_Age_Tag  scenario.  Similarly,  length d ata  of  tagged f ish c an b e  fit  

directly  without  converting  to a ge  composition,  but  more  work  is  needed to e  xplore  the  

performance  of  tag-integrated  models  using  only  length d ata  from  tagged f ish.  In  most  cases,  the  

benefit  gained  from  incorporating  tagging  data  will  outweigh p otential  pitfalls  as  long  as  the  

critical  assumptions  are  carefully  considered  and t ag-integrated m odels  are  parametrized  

accordingly  
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There  are  considerable  opportunities  for  incorporating  underutilized s patially-explicit  data  sets,  

which e xist  in m any  fisheries  agencies  (e.g.,  tag-recovery  data,  electronic  tagging,  genetics,  

otolith m icrochemistry,  or  vessel  monitoring  system la ndings  data),  into i ntegrated  assessment  

frameworks  to i nform  complex  spatial  dynamics  (Goethel  et  al.,  2011;  Berger  et  al.,  2017;  Li  et  

al.,  2018).  By  matching  the  flexibility  of  integrated a nalysis  with f ine-scale  spatial  models,  data  

can b e  used  at  the  scale  at  which t hey  were  collected ( e.g.,  by  implementing  distribution m odels  

within th e  assessment  framework;  Berger  et  al.,  2017).  A  good d eal  remains  to b e  learned  about  

the  implementation a nd p arametrization o f  spatial  assessment  models,  yet  tag-integrated  

frameworks  are  clearly  an i nformative  option f or  representing  complex  real-world s patial  

dynamics.  The  utility  of  spatial  models  depends  on th e  goals  of  management  and th e  importance  

of  understanding  fine-scale  dynamics  for  a  given s pecies  (Berger  et  al.,  2017;  Punt  et  al,  

2019a,b).  Continued w ork  is  needed t o i dentify  robust  management  strategies  when c omplex  

spatiotemporal  dynamics  exist  (e.g.,  Punt  et  al.,  2017b).  Despite  the  simplicity  of  the  simulation  

framework  we  applied ( i.e.,  limited s patiotemporal  complexity  and p rocess  error,  known n atural  

mortality  and r eporting  rates,  and p erfect  alignment  of  biological  and  assessment  units),  our  

results  provide  insights  into th e  importance  of  accounting  for  spatial  population s tructure  in  

assessment  models  and th e  role  that  tagging  data,  even w hen  collected  at  limited s patiotemporal  

scales,  can h ave  for  informing  connectivity  patterns  and i mproving  population-specific  

parameter  estimates  from s patially-explicit  models.   
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906 7.   Tables  

Table  1.  Uncertainty  associated w ith e ach d ata  set  used t o s imulate  observation e rror  in t he  

simulation m odel  and i nput  as  data  weights  in t he  estimation m odels  (including  effective  sample  

size  (ESS)  for  age  composition a nd ta gging  data).  The  variance  levels  used  to s imulate  

recruitment  deviations  in  the  operating m odel  and  subsequently  used t o p enalize  deviations  from  

average  recruitment  in t he  estimation  model  are  also p rovided.  ESS  and v ariance  (  σ   )  are  

constant  across  years,  while  tagging  ESS  is  also c onstant  across  cohorts  (i.e.,  each t agged  cohort  

has  the  same  ESS).  Models  without  tagging  data  use  the  same  weighting,  but  have  no ta gging  

component.   
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 Data component Distribution Parameter  Base settings 

  Fishery age composition Multinomial ESS 

 Population 

150. 

 1 Population 2 

150. 

 Fishery yield Lognormal  σ 0.05 0.05 

  Survey age composition Multinomial ESS 150. 150. 

  Survey biomass index Lognormal  σ 0.2 0.2 

 Tagging data Multinomial ESS 200. 200. 

 Recruitment variance Lognormal  σ 0.55 0.5 
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919 Table  2.  Operating  model  assumptions  and i nputs  for  the  tagging  sub-model.  Descriptions  are  

provided f or  the  Base  model  scenario.  Models  that  differ  from  the  Base  scenario s ettings  in t erms  

of  operating m odel  assumptions  are  denoted b y  a  (  ^  ),  whereas  those  differing  in t he  estimation  

model  assumptions  are  denoted b y  a  (  *  ).  Scenario n ames  are  provided i n  Table  3.   
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 Tag component  Base settings    Models with alternate settings 

      Total number of tag releases per year 5,000 Tag_Opp ̂  

 Population distribution    Proportional to survey abundance  Tag_Opp ̂ , Tag_Area_2 ̂  

   Age distribution of tags     Proportional to survey age compositions No_Age_Tag * 

  Frequency of tagging   Every five years    No_Tag ̂ , Tag_Yrly ̂ , Tag_evy_10 ̂ , 

  Tag_Beg_5 ̂ , Tag_Mid_5 ̂ , Tag_End_5 ̂ ,  

 Tag lifespan  Five years 

 Tag mixing  Fully mixed  No_Tag_Mx ^, Est_Tag_Mx ^* 



 

 

 

 

  

 

925 Tabl  e 3  . Descriptio  n o  f simulatio  n scenarios,  associate  d scenari  o abbreviations,  critical  mode  l assumptions,  an  d convergenc  e rates  . 

O  M indicates  th  e operatin  g model  an  d E  M represents  th  e estimatio  n model  . 926 
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Simulation group Scenario name Tag design (OM) Tag assumptions Movement parametrization Other notes Convergence 

(EM) rate 

Tag time series Base Tag every 5 years Match OM Estimate in 2 year time blocks 0.980 

(Group 1) No_Tag No tagging Match OM Estimate in 2 year time blocks Spatial model with no tagging 1.000 

Tag_Yrly Tag every year Match OM Estimate in 2 year time blocks 0.990 

Tag_Evy_10 Tag every 10 years Match OM Estimate in 2 year time blocks 0.990 

Tag_Beg_5 Tag during the first 5 years Match OM Estimate in 2 year time blocks 1.000 

Tag_Mid_5 Tag during the middle 5 years Match OM Estimate in 2 year time blocks 1.000 

Tag_End_5 Tag during the terminal 5 years Match OM Estimate in 2 year time blocks 0.990 

Tag deployment Opp_Tag Tag opportunistically by Match OM Estimate in 2 year time blocks The probability of a tag event occurring is 1.000 

(Group 2) population and year determined by a series of independent Bernouilli 

and uniform distributions (see Table 3) 

Tag_Area_2 Tag only in population 2 every 5 Match OM Estimate in 2 year time blocks 1.000 

years 

Tag assumptions No_Age_Tag Tag every 5 years Do not fit age-based Estimate in 2 year time blocks EM assumes no information on age of tagged fish 1.000 

(Group 3) cohorts 

No_Tag_Mx Tag every 5 years, assume Ignore incomplete Estimate in 2 year time blocks Movement and F differ for tagged fish in year of 1.000 

incomplete mixing of tags mixing tag release in OM, EM assumes complete mixing 

Est_Tag_Mx Tag every 5 years, assume Estimate incomplete Estimate in 2 year time blocks Movement and F differ for tagged fish in year of 1.000 

incomplete mixing of tags mixing rates release in OM, EM estimates these parameters 

Life History LL_Tag_Evy_5 Tag every 5 years Match OM Estimate in 2 year time blocks Long-lived life history (16 ages) 1.000 

(Group 4) SL_Tag_Evy_5 Tag every 5 years Match OM Estimate in 2 year time blocks Short-lived life history (4 ages) 0.890 

Movement No_Move No tagging Match OM No movement estimated OM includes movement among populations, but 1.000 

parametrization EM assumes two closed populations 

(Group 5) Cnst_Move Tag every 5 years Match OM Estimate constant movement 0.990 



 

 

 

 

 

 

  

  

            

            

 

        

 

  

 

          

 

 

       

 

   Simulation group Scenario name Biomass Fishing Mortality Recruitment Movement 

Population 1 Population 2 System Population 1 Population 2 Population 1 Population 2 System Population 1 to 2 Population 2 to 1 

Tag time series Base 0.61 0.39 0.33 7.05 1.48 1.86 7.16 0.76 6.71 5.49 

(Group 1) No_Tag -1.36 2.96 0.3 14.63 0.01 1.07 17.07 0.87 71.78 74.86 

Tag_Yrly 0.67 0.11 0.26 7.96 1.88 0.9 7.73 0.73 5.7 6.3 

Tag_Evy_10 0.23 0.52 0.19 9.17 1.37 4.04 6.79 0.65 21.11 23.36 

Tag_Beg_5 0.1 0.85 0.23 9.47 0.65 10.09 -1.22 0.86 42.03 39.08 

Tag_Mid_5 0.35 0.62 0.28 8.69 1.0 8.11 4.64 0.84 40.14 42.45 

Tag_End_5 -0.47 1.75 0.28 10.93 -0.42 7.17 5.74 0.8 53.84 57.23 

Tag deployment Opp_Tag 0.07 1.07 0.32 10.62 0.64 5.57 6.51 0.85 25.11 30.47 

(Group 2) Tag_Area_2 -0.87 2.65 0.45 11.38 -0.4 -4.22 18.19 1.04 -3.07 1.67 

Tag assumptions No_Age_Tag 3.49 14.3 7.82 -0.91 -14.76 -2.34 31.77 6.32 14.5 16.14 

(Group 3) No_Tag_Mx 8.7 12.8 10.09 -5.99 -14.04 11.12 12.8 6.9 -9.03 -13.17 

Est_Tag_Mx 0.14 1.9 0.74 7.47 -0.21 1.0 10.57 1.15 1.38 5.05 

Life History SL_Tag_Evy_5 -0.47 1.1 0.03 2.2 -1.77 5.79 -1.82 0.21 32.51 18.74 

(Group 4) LL_Tag_Evy_5 0.8 1.2 0.76 4.96 3.9 3.81 5.21 0.68 7.54 5.75 

Movement No_Move -6.54 13.14 1.43 20.57 -12.19 -2.76 32.58 1.73 NA NA 

parametrization Cnst_Move 2.34 -1.85 0.1 5.05 4.16 7.81 -0.11 0.57 16.1 6.67 

(Group 5) 

 

  

  

929 Tabl  e 4  . Mean  relativ  e erro  r (MRE  ) aggregate  d across  al  l years  fo  r importan  t populatio  n parameters  . Scenari  o names  ar  e fro  m Table  

3  . Syste  m values  fo  r biomass  an  d recruitmen  t represen  t th  e MRE  aggregate  d across  populations  . Values  fo  r th  e movemen  t parameters  

represen  t th  e MR  E fo  r th  e estimate  d movemen  t rates  (i.e.  , emigratio  n no  t residency)  . An  N  A indicates  tha  t th  e valu  e was  no  t estimated  

i  n th  e give  n scenario  . 
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 Simulation group  Scenario name Biomass  Fishing Mortality Recruitment Movement 

  Population 1 Population 2 System     Population 1 Population 2 Population 1 Population 2 System    Population 1 to 2    Population 2 to 1 

  Tag time series           Base 3.29 4.63 1.47 7.32 6.09 9.37 12.94 3.17 21.93 25.52 

 (Group 1) No_Tag 5.23 8.57 1.88 13.67 10.81 14.99 22.96 3.39 72.05 91.04 

Tag_Yrly 2.95 4.17 1.42 8.26 5.58 8.58 11.16 3.16 20.04 20.5 

Tag_Evy_10 3.85 5.75 1.57 8.95 7.53 10.99 15.82 3.24 33.06 38.98 

Tag_Beg_5 4.31 6.62 1.63 9.29 8.56 11.7 17.99 3.31 51.98 55.39 

Tag_Mid_5 4.05 6.03 1.65 8.9 7.76 11.04 15.63 3.29 48.37 57.48 

Tag_End_5 4.0 5.89 1.53 10.17 7.81 12.08 17.48 3.2 54.76 69.15 

 Tag deployment        Opp_Tag 4.22 6.14 1.65 10.48 7.98 11.48 16.65 3.31 44.34 46.62 

 (Group 2) Tag_Area_2 4.06 5.94 1.62 11.27 6.78 11.32 16.52 3.28 34.92 26.57 

 Tag assumptions  No_Age_Tag 5.42 13.12 6.35 6.8 15.64 14.47 26.5 4.7 40.99 39.2 

 (Group 3) No_Tag_Mx 6.97 12.24 8.38 8.09 15.05 11.13 15.33 4.86 32.4 47.73 

Est_Tag_Mx 3.53 5.14 1.59 7.8 6.58 10.1 14.46 3.25 31.14 31.79 

 Life History          SL_Tag_Evy_5 3.74 5.37 2.11 5.53 7.59 9.34 13.13 3.5 33.17 30.81 

 (Group 4) LL_Tag_Evy_5 3.33 4.18 1.26 5.82 5.94 10.6 15.24 3.21 18.83 22.88 

Movement  No_Move 6.82 12.11 2.06 19.97 12.87 14.98 23.41 3.4 NA NA 

parametrization       Cnst_Move 3.93 5.72 1.48 7.01 7.42 11.74 17.96 3.18 28.39 23.62 

 (Group 5) 

   

  

937 Tabl  e 5  . Media  n absolut  e relativ  e erro  r (MARE  ) aggregate  d across  al  l years  fo  r importan  t populatio  n parameters.  Scenario  names  ar  e 

fro  m Tabl  e 3  . Syste  m value  s fo  r biomass  an  d recruitmen  t represen  t th  e MAR  E aggregate  d across  populations.  Values  fo  r th  e 

movemen  t parameters  represen  t th  e MARE  fo  r th  e estimate  d movemen  t rates  (i.e.  , emigration  no  t residency)  . A  n N  A indicates  tha  t th  e 

valu  e wa  s no  t estimate  d i  n th  e give  n scenario.  
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944 8  .  Figures  

 

Figur  e 1  . Violi  n plots  illustratin  g th  e distributio  n o  f percen  t relativ  e erro  r i  n biomass  , recruitment  , fishin  g mortality  , an  d movemen  t b  y populatio  n 

fo  r al  l runs  withi  n eac  h scenari  o an  d across  al  l years  i  n th  e assessment  tim  e series.  Overlai  d boxplot  s provid  e th  e interquartil  e rang  e an  d median  

(line)  . Points  ar  e th  e mea  n values  . Th  e vertica  l dashe  d lin  e represents  zer  o bias.  Scenari  o name  s ar  e explaine  d i  n Tabl  e 3  . 
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950 Figur  e 2  . Violi  n plots  illustratin  g th  e termina  l yea  r (yea  r 30  ) distributio  n o  f percen  t relativ  e erro  r in  biomass  , recruitment  , fishin  g mortality  , and  

movemen  t b  y population  fo  r all  runs  withi  n eac  h scenario  . Overlai  d boxplot  s provid  e th  e interquartil  e rang  e and  media  n (line)  . Points  ar  e th  e 

mea  n values.  Th  e vertica  l dashe  d lin  e represents  zero  bias  . Scenari  o names  ar  e explained  i  n Tabl  e 3  .  
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954 Figur  e 3  . Tim  e series  plots  illustratin  g th  e distributio  n (violi  n plots  ) o  f movemen  t (lef  t panel)  , recruitmen  t (middl  e panel)  , an  d fishin  g mortalit  y 

(right  panel  ) parameters  fo  r populatio  n on  e across  severa  l ta  g tim  e series  scenarios.  Points  represen  t th  e annua  l median  estimat  e across  al  l of  th  e 

converge  d models  . Th  e lin  e represents  th  e operatin  g mode  l tru  e value  . Fo  r th  e movemen  t plot,  th  e blac  k fill  an  d points  represen  t residenc  y in  

populatio  n on  e (highe  r proportions  i  n eac  h plot),  whereas  th  e gre  y fil  l and  points  represen  t movemen  t rates  t  o populatio  n tw  o (lowe  r proportion  s 

i  n eac  h plot)  . Scenari  o name  s ar  e provide  d abov  e eac  h plot  an  d ar  e describe  d i  n Tabl  e 3  . 
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960 Figur  e 4  . Th  e approximat  e relativ  e cos  t o  f  a simulate  d taggin  g desig  n plotte  d against  th  e resultin  g median  absolut  e relativ  e erro  r (MARE  ) 

aggregate  d across  years  fo  r importan  t population-specifi  c parameters  . Relativ  e cost  is  estimate  d base  d o  n th  e frequenc  y o  f tagging,  th  e numbe  r o  f 

tags  released  , an  d th  e spatia  l distributio  n o  f tagging  . Point  labels  provid  e th  e scenari  o nam  e a  s describe  d i  n Tabl  e 3  . Th  e result  s fo  r th  e Bas  e 

scenario  and  th  e scenario  tha  t does  no  t includ  e taggin  g dat  a ar  e highlighte  d wit  h blac  k label  fill  . Not  e that  th  e x-axi  s scales  diffe  r b  y panel.  
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