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Abstract

The need for spatial stock assessment models that match the spatiotemporal management and
biological structure of marine species is growing. Spatially explicit, tag-integrated models can
emulate complex population structure, because they are able to estimate connectivity among
population units by incorporating tag-recovery data directly into the combined objective function
of the assessment. However, the limited scope of many small-scale tagging studies along with
difficulty addressing major assumptions of tagging data has prevented more widespread
utilization of tag-recovery data sets within tag-integrated models. A spatially explicit simulation-
estimation framework that simulates metapopulation dynamics with two populations and time-
varying connectivity was implemented for three life history (i.e., longevity) scenarios to explore
the relative utility of tagging data for use in spatial assessment models across a range of tag
release designs (e.g., annual, historical, periodic, and opportunistic tagging). Model scenarios
also investigated the impacts of not accounting for incomplete tag mixing or assuming all fish
were fully selected (i.e., that the age composition of tagged fish was unknown). Results
demonstrated that periodic tagging (e.g., releasing tags every five years) may provide the best
balance between tag program cost and parameter bias. For cost-effective tagging programs, tag
releases should be spread over a longer time period instead of focusing on release events in
consecutive years, while releasing tags in tandem with existing surveys could further improve the
practicality of implementing tag-recovery experiments. However, care should be taken to fully
address critical modeling assumptions (e.g., by estimating tag mixing parameters) before

incorporating tagging data into an assessment model.
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Highlights:
1. Including tagging data improved spatial assessments regardless of release design.
2. Periodic releases balanced tradeoffs between tag program cost and parameter bias.
3. Time-varying movement was estimable with informative periodic tagging data.
4. Violation of tagging assumptions increased parameter bias more than ignoring
movement.

5. Estimating tag mixing parameters was feasible and eliminated associated bias.

Keywords: spatial models, tag-integrated models, stock assessment, connectivity, tag-

recovery population structure, stock identification, tag mixing
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1. Introduction

In recent years, advocacy for the development and implementation of spatial stock assessment
models to support the often complex network of spatiotemporal fisheries management
regulations has increased (Berger et al., 2017; Punt et al., 2019a,b). Spatially explicit models can
directly account for spatial population structure and connectivity, while matching the scale at
which data are collected and management actions enacted (Goethel et al., 2011; Berger et al.,
2017; Rogers et al., 2017). However, the performance of spatial models depends on
understanding the underlying spatial structure to ensure independent population units are being
adequately identified and modeled (Kerr et al., 2016; Cadrin et al., 2019). As the scale of spatial
assessment models becomes finer, it requires estimating a rapidly increasing number of
additional parameters to account for connectivity, independent recruitment events, or biological
parameters for each population unit modeled (Cope and Punt, 2011; Goethel et al., 2011; Punt,
2019b). To make estimation feasible, spatial assessments often utilize simplifying assumptions
(e.g., functional forms for movement; Carruthers et al., 2015) or share parameters among
population units, such as productivity (e.g., Punt et al., 2000) or selectivity (e.g., Thorson and
Wetzel, 2016). Simulation testing has demonstrated that models which directly account for
spatial structure often reduce bias compared with assuming no structure exists (i.e., panmictic
assessments; Ying et al., 2011), implicitly modeling spatial structure (i.e., areas-as-fleets
assessment approaches; Punt et al., 2015, 2016, 2017b, 2018), or ignoring movement among

units (i.e., closed population models; Hulson et al., 2011; Goethel et al., 2015b;).
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When explicitly incorporating spatial structure within an assessment model, it is often necessary
to account for connectivity among population units, even though movement parameters may be
poorly estimated and imprecise when no tagging data exist (Goethel et al., 2015b; McGilliard et
al., 2015; Punt, 2018, 2019a). Parametrizing and identifying connectivity dynamics has become a
focal issue for spatial assessment models, because misdiagnosing connectivity dynamics can
result in a spatial model that performs as poorly as nonspatial assessments (Goethel et al., 2015b;
Lee et al., 2017; Cadrin et al., 2019; Punt, 2019b). Early spatial assessment models relied on
external estimates of movement typically from tagging analyses, which were then incorporated
into the assessment as fixed parameters (e.g., Beverton and Holt, 1957; Quinn et al., 1990). As
data quality and computing power have improved, connectivity rates have increasingly been
treated as estimable parameters. By utilizing integrated assessment models (Maunder and Punt,
2013), preprocessed data from a variety of auxiliary sources can be incorporated in the
assessment utilizing a combined objective function to estimate parameters. For instance, tag
recaptures can be predicted in a sub-model using the same parameter values for both the tagged
and untagged populations (e.g., Maunder, 1998). The combined likelihood approach of
integrated models ensures consistency of assumptions and enhances estimates of uncertainty
compared to the discrete two-step method of early spatial models (Maunder 1998, 2001).
Additionally, by incorporating an additional data source (i.e., tagging data), tag-integrated
assessment models utilize additional information to help estimate important parameters, such as
fishing mortality, natural mortality, and, in spatially-explicit models, movement (Goethel et al.,

2011; Punt, 2019b).
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Implementing spatial tag-integrated models can be more demanding than nonspatial counterparts
given the increased complexity of the modeling approach and resulting peer-review process
(Berger et al., 2017), but assessments for a number of marine species have been improved
through application of spatially explicit, tag-integrated models (e.g., Australian school shark,
Galeorhinus galeus, Punt et al., 2000; South Pacific tunas using MULTIFAN-CL, Hampton and
Fournier, 2001; and South African sardine, Sardinops sagax, de Moor et al., 2017). A number of
simulation frameworks have explored the performance of spatial, tag-integrated models,
particularly in comparison to spatial assessments that do not use tagging information (e.g.,
Maunder, 2001; Hulson et al., 2011, 2013; Goethel et al., 2015b; Vincent et al., 2017). Most
studies have concluded that, when available, tagging data can greatly improve the performance
of spatial assessment models by increasing the precision and accuracy of movement rates and
reducing parameter confounding among recruitment and connectivity estimates (Hulson et al.,

2011; Goethel et al., 2015b; Cadrin et al., 2019).

However, the spatiotemporal extent of tagging (or other auxiliary) data needed to reliably
estimate complex movement patterns in spatial assessment models remains relatively unknown.
Given resource limitations for fisheries data collection and assessment, identifying tradeoffs
between modeling complex movement patterns and the extent of tagging data needed to inform
movement parameter estimation is needed. A generalized spatially-explicit simulation-estimation
framework was developed to determine the type of data (e.g., tag-recovery information) along
with the complexity of movement parametrization required to reliably estimate population-
specific parameters (e.g., biomass and fishing mortality trends) in spatial stock assessment

models. The tradeoffs between the cost of various tagging program designs and resulting
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parameter bias in tag-integrated models were then identified. The framework involved simulating
common fishery data and a tag-recovery study for a two population metapopulation connected
through time-varying movement, then applying a variety of spatial assessment models to the
simulated pseudo-data and comparing model performance. Simulation scenarios were placed into
five groups to explore how 1) tagging time series, 2) tag deployment, 3) adherence to tagging
data assumptions, 4) life history, and 5) movement parametrization impacted estimates from the
applied assessment models. To address our objectives, we compared an estimation model that
incorporated tagging data and estimated movement to ones that did not include tagging data or
ignored movement. We also compared tag-integrated models that utilized perfectly implemented
tagging studies to those utilizing tagging data where important assumptions of the tagging
experimental design were violated (e.g., incomplete tag mixing occurred or the age of tagged fish
was unknown). The results of the study provide new insight on the role of tagging data in
implementing reliable spatial assessment models, the utility of different tag-recovery
experimental designs for tag-integrated assessments, and the potential pitfalls of incorporating

tagging data into assessments.

2. Methods

2.1 Overview

A simulation-estimation framework was developed, wherein common fisheries data (e.g., fishery
catch and fishery-independent survey information including associated age compositions) and a
tag-recovery study were simulated with measurement error. An assessment (estimation) model

was then fit to the simulated ‘observed’ pseudo-data and estimates of parameters were compared
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to the true values used in the operating model. To explore the influence of the experimental
design of a given tagging study along with model assumptions (i.e., of the tagging study or the
assessment model spatial structure) on estimation model performance, a total of 16 scenarios
were carried out (with an additional 56 scenarios provided in the supplementary material).
Scenarios were placed in five groups (i.e., tagging time series, tag deployment protocols, tag data
assumptions, life history, and movement parametrization). Scenario names are provided in italics
(and used throughout the text) with full details of the main model runs provided in detail in

section 2.4 (Simulation Scenarios).

The operating model was implemented to simulate the dynamics of a metapopulation (as defined
in Goethel and Berger, 2017) consisting of two interconnected populations with differing
demographics and productivity regimes. Reproductive mixing occurred among populations
through the movement of mature individuals, but each population was assumed to maintain its
own larval pool and stock-recruit function. Instantaneous box-transfer movement was assumed at
the beginning of the year and once fish moved into another area they assumed the reproductive
dynamics and demographics of the population residing in that area, which implied that
environment was the main driver of life history (not genetics). Population dynamics were
simulated for thirty years starting from an input initial abundance-at-age and applying random
annual deviations for recruitment, fishing mortality, and movement to encapsulate variation.
Pseudo-data were generated for each year of the model with measurement error simulated for
each data source using stochastic processes based on an assumed underlying probability
distribution. For each scenario, a total of 500 runs were simulated, and, for each run, the data set

differed due to the realized measurement error. Each run maintained the same population
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dynamics (i.e., random deviations on population parameters were constant) and differed only in
the implemented measurement error. Similarly, across all scenarios, associated run numbers were
identical in terms of both population random deviations and realized measurement error (i.e.,
across all scenarios, run number one had identical population trajectories and data sets) to

facilitate comparison across simulation scenarios.

Spatially-explicit stock assessments were applied to the various simulated, thirty-year time series
of pseudo-data (with or without fitting tag recaptures). The assessment models matched the
operating model dynamics except for the parametrization of movement, which varied from
ignoring movement to estimating annual rates. Error, precision, and stability were assessed for

each scenario based on model performance across all converged runs.

The operating model was described in Goethel and Berger (2017, using the metapopulation
configuration) with the addition of simulated tag-recovery pseudo-data. The estimation models
were generalized versions of those outlined in Goethel et al. (2011) and implemented in Goethel
et al. (2015a,b) with further refinements, particularly in the handling of tagging data. Both
models were coded in AD Model Builder (Fournier et al., 2012) and can be downloaded from the

Github repository (https://github.com/dgoethel/tag-integrated-model).

2.2 Operating model

The two population, metapopulation operating model was parametrized to simulate the dynamics

of a relatively short-lived (plus group at eight years), fast growing species. Each population
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maintained typical assumptions for species of medium longevity including moderate levels of
natural mortality (M, instantaneous value of 0.2 and 0.25 for population one and population two,
respectively), interannual variation in recruitment (or, value of 0.5 and 0.55 for population one
and population two, respectively), connectivity among populations (7, maximum annual
movement rate of 20% and 25% of the population for population one and population two,
respectively), and fishing mortality (that assumed a dome-shaped time trajectory). Simulations
were not meant to mimic the dynamics of any specific species, but were set up to resemble
general biological dynamics that may apply to several species groups (e.g., certain coastal
pelagic species, tunas, ground fish, or reef fish species). Variation in parameters (along with
stock-recruit relationships) among populations helped emulate metapopulation dynamics,
because population units often demonstrate unique demographic and reproductive rates in
metapopulation systems (see Goethel and Berger, 2017). The sequential order of events in the
operating model involved: (1) spawning; (2) recruitment to the population and fishery; (3)
release of tagged fish, if tagging takes place in that year; (4) instantaneous movement of tagged
and untagged fish among populations; and (5) continuous natural mortality and removals due to
harvest throughout the year, including tag recaptures with reporting rates of 70% and 80% (for
population one and population two, respectively). For a complete description of the population
dynamics see Supplementary Material SM.1 (including Table SM1-2 and Figures SM 1-2 for
operating model input parameters, as well as Goethel and Berger, 2017, including Figure 2

therein for a schematic illustrating the population dynamics).

2.2.1 Data generation

10
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The operating model produced five population-specific sets of pseudo-data: (1) age compositions
from the catch; (2) fishery-independent survey age compositions; (3) total yield; (4) fishery-
independent survey biomass; and (5) tag recaptures. Measurement error was incorporated into
each data set based on an underlying error assumption (i.e., lognormal error for fishery yield and
survey biomass along with multinomial error for fishery and survey age compositions and tag
recapture states; Table 1). For a full description of the pseudo-data generation process see

Supplementary Material Section SM1.3 on the incorporation of measurement error.

Differences in tagging experimental design were the primary way in which operating models
differed, particularly in how tags were released across years, populations, and ages. A multiyear
Brownie tagging model (Brownie et al., 1993) imbedded directly within the operating model
simulated the tag-recovery pseudo-data across multiple release and recapture events (following
the estimation model equations of Lauretta and Goethel, 2017). In each year of the simulation, a
new tag cohort could be released into the population, where a cohort was defined by the
combination of year, age, and population of release. The tag release protocol was defined by a
combination of four independent processes: the number of tags released, the frequency of tag
release events, the population distribution of tags, and the age distribution of tags. The sequential
order of tagging dynamics involved: (1) a simulated release event at the beginning of the year
that defined the number of fish released in a given cohort; (2) instantaneous movement post-
tagging, with potential for incomplete mixing of the tagged and untagged population in the year
of release (i.e., different movement rates for tagged fish); (3) continuous mortality throughout the
year (with potential for incomplete mixing causing different fishing mortality in the year of

release), which resulted in recaptured tags that were tallied by cohort and population of recapture

11
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(and accounted for non-reporting of tags); (4) repetition of this sequence in the following year
starting at step (2) for tagged fish that survived, which continued until a mortality event or the
maximum life of the tag was reached (see Supplementary Material section SM.1.3 for a full

description of the tag dynamics).

There were two types of tag release designs in the model: fixed and opportunistic. A majority of
scenarios utilized a fixed design where a set number of tags were released during each release
event, which occurred in pre-determined years and populations throughout the time series.
Opportunistic tagging designs utilized probability distributions to determine whether a tag event
occurred in a given year (Bernoulli distribution, p = 0.7) or population (Bernoulli distribution, p
= 0.6) and were also used to set the number of tag releases in a given release event (uniform
distribution; see Table SM2 for the inputs assumed for each tagging distribution). The
opportunistic tagging scenarios were meant to emulate, for example, multiple patchwork studies
over time (e.g., a handful of independent, short-term studies). Although the simulations do not
account for other potential issues with these types of tagging programs (e.g., tagging only certain

age or size classes), they provide insight to the usefulness of patchwork tagging programs.

For the fixed tagging designs, a total of 5,000 tags were released during each release event. Tags
were assigned to a release cohort by apportioning the total releases to a population based on the
relative survey biomass and distributing across ages within a population relative to survey age
compositions in the given population (see Table 2 for the details of the Base scenario tagging
inputs). The tag deployment dynamics were parameterized so that the number of tags was much

less than 1% of initial population abundance and that fish were tagged using the same gear as the

12
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survey resulting in the same age distribution. The age of tagged fish was thus provided to the
assessment model without error. Although these assumptions are reasonable for carefully
designed tagging studies, the known age of release assumption would be more difficult to adhere
to in real-world situations. Therefore, a sensitivity run was explored that assumed the age of

tagged fish was unknown (see section 2.4, Simulation Scenarios).

Movement was assumed to occur immediately following tagging, which resulted in tags being
available for recapture from each cohort in each population in the release year. However, in the
year of release, the model was able to account for incomplete mixing of tagged fish and untagged
fish by scaling movement and fishing mortality by associated proportionality coefficients (see
the tag data assumptions scenarios, Table 3). Tag recaptures by cohort in a given year and
population were calculated using Baranov’s catch equation assuming a continuous year-long
process of mortality and harvest and discounting tags for non-reporting based on a reporting rate
parameter. It was assumed that each tag had a lifespan of five years (after which, if a tagged fish
was still alive, it was placed in the not recaptured state for that cohort), and there was no tag loss
or tag induced mortality. The basic tagging dynamics were implemented in all scenarios unless

otherwise noted in section 2.4 (Table 3).

2.2 Estimation models

The estimation models matched the operating model parameterization (including natural
mortality and reporting rates being fixed at the true values), with the exception of movement

(estimated in two year time blocks). Each estimation model was implemented using an integrated

13
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statistical catch-at-age framework (Maunder and Punt, 2013) based on a generalized version of
the assessments used in Goethel et al. (2015a,b; see section SM.2 in the Supplementary Material
for a complete description of the estimation model). The variance terms and effective sample
size (ESS) for each likelihood component were also taken directly from the operating model
(Table 1), because error misspecification was not considered here. Variants of the estimation
model included: (a) the Base scenario model which matched the operating model except that
movement was estimated in two year time blocks; (b) a spatial model which matched the Base
scenario, but did not incorporate tagging pseudo-data (No_Tag); (c) a closed population model
that treated each population as independent units assuming no movement between them
(No_Move); (d) the Base scenario model, but with parameters estimated to account for
incomplete tag mixing (Est_Tag Mx); (e) the Base scenario model, but assuming the age of
tagged fish was unknown forcing the estimation model to fit age-aggregated tagging cohorts

(No_Age_Tag; see Table 3 for a summary of scenarios).

2.3 Evaluation of model performance

The performance of each estimation model scenario was compared based on bias and precision
in estimates of population parameters (e.g., recruitment, fishing mortality, biomass, and
movement rates). Mean relative error (MRE; an overall measure of bias) and the median absolute
relative error (MARE; a measure of bias and variability) for a given model parameter were
calculated by population aggregated across the time series (i.e., calculated using the thirty years

of estimates across all 500 model runs within each scenario). Model stability, an indicator of
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over-parametrization and robustness, was addressed by calculating the proportion of runs that an

estimation model converged.

2.4 Simulation scenarios

Model scenarios were placed in five groups, which included tagging time series length, tag
deployment protocols, tag data assumptions, life history, and movement parametrization.
Scenario names are provided in italics (and used throughout the remaining text) with full details
of the main model runs provided in Table 3. Additional sensitivity runs are summarized in the

Supplementary Material (Table SM3).

The setup of the Base simulation scenario tag release design was meant to balance the relative
cost of the tagging program (i.e., releasing tags every five years) with parameter estimation
performance, particularly for movement parameters, to demonstrate a cost-effective model of
intermediate complexity. The parametrization of movement in the estimation model balanced
model complexity against precision of parameter estimates by estimating movement in two-year
time blocks (as was suggested by Goethel et al., 2015b for estimation of time-varying movement
in spatial assessment models) instead of annually. Each of the scenario runs was compared to the
Base model scenario results to explore how changes in the tagging program or alternate

assumptions impacted estimation model performance.

Group 1: tagging time series

15
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There has been limited exploration of alternate tag release designs to determine whether the
frequency and timing (relative to the overall assessment time series) of release events may be
more important factors than overall length of a tagging time series. Several common short-term
tag release designs (e.g., releases over five consecutive years) were simulated and differed
according to the point in the time series at which they were implemented [e.g., beginning
(Tag_Beg_5), middle (Tag_Mid_5), and end (Tag_End_5) of the time series]. An annual tagging
time series where tags were released every year (Tag_Yrly) was also implemented. These were
compared with more unique designs that allowed for periodic tagging, which were spread out
across the entire time series [e.g., every five years (Base) and every ten years (Tag_Evy_10)]. A

spatial model that did not incorporate tagging was also implemented (No_Tag).

Group 2: tag deployment

Scenarios also included different design aspects for how tags were released including how tag
releases were distributed across populations [e.g., proportional to survey biomass by population
(Base) or releasing tags in only one population (Tag_Area_2)]. A fully opportunistic tagging
design was also implemented (Opp_Tag) wherein the number of tags released was defined by a
uniform distribution, the probability of a tag release event in a given year was determined by a
Bernoulli distribution (with potential release event years matching the Base scenario), and the
probability of a release event occurring in a given population was defined by an independent
Bernoulli distribution (see Table SM2). This release design was meant to emulate a patchwork
tagging program that released tags as funding became available or as a series of pilot projects

over time with limited spatial scale.
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Group 3: tag data assumptions

Two main assumptions of tag-recovery data, complete mixing of tags and known age structure of
tags, were explored to determine how tag-integrated models performed when these assumptions
were violated. To emulate incomplete mixing of tagged fish during the year of release,
simulations were implemented wherein tagged fish were assumed to have a much higher
residency (i.e., randomly distributed around an average residency rate of 90%) and lower levels
of fishing mortality (i.e., 50% of the associated fishing mortality on untagged fish). Associated
estimation models then either ignored tag mixing (No_Tag_Mx) or estimated independent
parameters for movement and fishing mortality for tagged fish in tag release years
(Est_Tag_Mx). For the estimation model that accounted for incomplete tag mixing, cohort-
specific fishing mortality and movement parameters were estimated directly for tagged fish in

the year of release.

The Base model scenario assumed that the age composition of all tagged fish in a cohort was
known (e.g., by either taking non-invasive scale samples to determine age directly or applying
age-length keys to the length composition of tagged fish); however, directly aging tagged fish is
often not feasible, and age-length keys may result in biased age composition information.
Therefore, to provide an indication of the maximum bias that might be expected when the age
structure of tagged fish was unknown, the No_Age_Tag scenario simulated age-based tagging
dynamics with the associated estimation model ignoring age structure in the tagging sub-model.

For the estimation model, the input tag releases were summed across ages, and the model then

17



390 calculated predicted tag-recaptures assuming 100% selectivity and with age (i.e., the age

391  subscript) removed from the calculations. In the objective function, the tag-recapture pseudo-
392  data were summed across ages, and the pooled pseudo-data was fit to the tag-recaptures

393  predicted by the assessment model. The inherent process error due to age-based tagging

394  dynamics in the operating model that was not accounted for in the estimation model provided a
395  simple approximation to the error that might result from unknown ages of tagged fish.

396

397  Group 4. life history

398

399 To enable moderate generalization of the findings beyond the single life history utilized for all
400  other scenarios, both long-lived (LL_Evy_5) and short-lived (SL_Evy_J5) life history scenarios
401  were implemented. The long-lived scenario doubled the number of ages to sixteen as well as

402  doubling both the age at 50% maturity and selectivity and halving the natural mortality to 0.1.
403  On the other hand, the short-lived scenario halved the number of ages to four along with halving
404  the age at 50% maturity and selectivity, whereas natural mortality was doubled. Both life history
405  scenarios assumed the same tagging dynamics as the Base scenario (i.e., releasing tags every five
406  years). Although the life history scenarios were rudimentary approximations of either fast

407  growing small pelagics (i.e., the short-lived scenario) or relatively slow growing ground fish or
408  deep-water species (i.e., the long-lived scenario), they provided an indication of the robustness of
409  the Base scenario tagging methodology across a variety of life history types.

410

411  Group 5: movement parametrization

412
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Several alternate movement parametrizations were implemented to illustrate how ignoring
movement (No_Move) or assuming constant movement rates (Cnst_Move) could potentially bias
resulting parameter estimates compared to estimating movement in two-year time blocks (Base).
Other exploratory scenarios were included in the supplementary material (see Table SM3) that
compared how different movement parameter time blocks performed [estimating yearly
movement (Move_Yrly), estimating yearly movement with yearly tag releases (Yr_T_Tag_Yr),

and estimating movement in five year time blocks (7_Blk_5_Yr)].

2.5 Comparison of relative tag program cost

The relative cost of each tagging experimental design was calculated as an approximation of
actual tagging program costs based on design features (i.e., the number of tags per year, number
of populations in which tagging occurred, and number of years of tag releases). Cost for each
tagging scenario was determined relative to the Base scenario tagging program [i.e., 5,000 tags
released every five years (for a total of seven years of releases) across two populations] where
each tagging design component (i.e., population, year, and every 5,000 tags released) was
assigned a unit cost of one. Therefore, the Base tagging scenario (and both life history scenarios)
had a total cost of 14 units (two populations*seven years*one unit of tags). All other tagging
programs were scaled up or down based on the relative number of populations and years in
which tagging occurred. The cost of the opportunistic tagging scenario was discounted by 25%,
because this scenario was meant to represent tagging programs that operated as opportunity arose
(implying a lower cost). Expenses related to tag recoveries (e.g., advertising and tag rewards)

were assumed to be similar across tagging designs, and these costs were not included. Plots were
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then developed to illustrate relative tag program cost and resulting MARE values across tag
release scenarios, which allowed comparison of the cost of a tagging program versus the

expected improvement in tag-integrated model performance.

3. Results

Base scenario performance

The Base model scenario was first fit to the simulated pseudo-data without measurement error as
both a self-consistency run and as a basis of comparison to demonstrate the impact of
measurement error on model estimation. When fit to pseudo-data without measurement error, the
Base scenario was able to replicate the population-specific biomass trends almost exactly (Figure
SM?2). Because movement was estimated in two-year time blocks, the trend tended to follow the
mean level of movement across the two years for which each movement parameter was
estimated. Although the pattern reflected the true movement dynamics relatively well, the
estimation model was not able to match the exact values in any given year due to the inherent
mismatch in the operating model and estimation model parameterizations. However, the two-
year time block parametrization of movement performed much better than yearly movement

estimation, because the latter was over-parametrized (Figure SM2).

When fit to pseudo-data with measurement error, the Base scenario also performed well, but with
lower precision in estimates (Tables 4-5, Figures 1-2). Biomass estimates over the time series
were unbiased (MRE near zero; Table 4) with high precision (MARE ranged from 1.47 to 4.63;

Table 5, Figure 1). Estimation of fishing mortality in both populations demonstrated slight
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overestimation (MRE ranged from 1.48 to 7.32; Table 4), but high precision (MARE was
between 6.09 and 7.32; Table 5, Figure 1). Population specific recruitment estimates tended to be
slightly overestimated (MRE between 1.86 and 7.16; Table 4) with moderate imprecision
(MARE ranging from 9.37 to 12.94; Table 5, Figure 1). System-wide estimates of both
recruitment and biomass tended to be much more accurate and precise than did population-
specific estimates. Movement parameters were the most biased (MRE between 5.49 and 6.71;
Table 4) and imprecise (MARE between 22 and 25.5; Table 5, Figure 1). Terminal year
parameter estimates demonstrated higher levels of bias, particularly in population-specific
recruitment estimates where population one recruitment tended to be overestimated and vice

versa for population two (Figure 2).

The Base scenario demonstrated limited parameter correlation resulting in high model stability.
Some minor correlations occurred among recruitment parameters and among initial abundance
parameters, which was to be expected given the relative lack of information in the data to
support independent estimation of many of these parameters. However, these correlations did not
influence model stability. The overall convergence rate of the Base scenario was 98% (Table 3).
High convergence was common across all simulation scenarios indicating that there were no
major issues stemming from parameter correlation or general model instability. However, the
short-lived life history (SL_Tag_Evy_5) scenario had a convergence rate of 89%, which was

reflective of the difficulty it had in estimating movement parameters.

The results of the alternate scenarios relative to the Base scenario are discussed by scenario

group with emphasis placed on the more novel findings. Results from scenarios not discussed in
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the main text can be found in the supplementary material, because these scenarios did not add
significantly to the primary findings or simply supported conclusions from previous studies

(Figures SM3-SM10).

Group I: tagging time series

The model without tagging data (No_Tag) demonstrated high imprecision in parameter
estimates, most noticeably in movement rates (MARE of 72 to 91; Table 5, Figures 1-2).
Similarly, levels of bias for fishing mortality in population one increased (MRE of 14.6; Table 4)
compared to the Base scenario. However, estimates of biomass were relatively unbiased (MRE
ranged from -1.36 to 2.96), albeit with higher imprecision than the Base scenario (MARE ranged
from 1.88 to 8.57; Tables 4-5). Although the no tagging model did not have convergence issues,
there was strong correlation between and among movement and recruitment parameters that
caused some runs to estimate zero recruitment in an area with a correspondingly inflated
movement of fish into that area (i.e., all recruitment was in one population with high emigration
from that population to allow those recruits to then inhabit the other population; Figure 3).
Tagging more frequently (i.e., the Tag_Yrly scenario) slightly reduced bias and imprecision,
whereas tagging less frequently (Tag_Evy_10) had the converse effect, although neither scenario
demonstrated patterns that differed greatly from the Base scenario. Short-term, clumped tagging
programs (i.e., Tag_Beg_ 5, Tag_Mid_5, and Tag_End_5) all performed similarly with generally
elevated bias and imprecision compared to the Base scenario (Tables 4-5, Figures 1-2). Tagging

at the end of the time series resulted in higher parameter bias across the time series (e.g., in
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population one fishing mortality; Figure 1), yet better terminal year estimates of fishing mortality

and movement (Figure 2).

Group 2: tag deployment

Tagging opportunistically (Opp_Tag) led to similar performance as the Base scenario, but with
increased levels of bias and imprecision in terminal year estimates (Figure 2) and movement
parameter values (MARE between 44 and 47; Tables 4-5; Figure 1). Tagging only in population
two (Tag_Area_2) performed similarly to the Opp_Tag scenario, but with improved movement
estimates (even compared to the Base scenario; MRE ranged from -3.07 to 1.67) and increased

bias in population two recruitment (MRE = 18.19; Tables 4-5, Figures 1-2).

The impact of tagging data and associated tag release design was most clearly demonstrated by
looking at the time series of movement estimates, recruitment, and fishing mortality (Figure 3).
Without tagging data (No_Tag), the model was not able to accurately estimate movement rates,
which led to a number of runs estimating zero recruitment in a given area, whereas the reduced
information on mortality rates caused by not having tagging data led to higher imprecision in
fishing mortality. The addition of tagging data (e.g., the Base scenario) immediately improved
movement estimates starting in the first year of release and extended for the assumed lifespan of
tags (i.e., five years) with decreasing impacts as fewer tags remained in the system. The
immediate effect was most clearly seen for the Tag_Mid_5 and Opp_Tag scenarios wherein
movement parameters were highly imprecise until a release event occurred, while the precision

slowly decreased following a release event (Figure 3). Similarly, precision and accuracy of both
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recruitment and fishing mortality were improved in years immediately following a release event.
The periodic release design (i.e., releasing tags every five years) of the Base scenario allowed
moderately precise movement parameters estimates, while providing high accuracy and precision
of other model parameters over the entire time series (Figure 3). Although the annual tagging
model (Tag_Yrly) greatly increased the precision of the movement parameters, the overall

improvement in other median parameter estimates was minimal compared to the Base scenario.

Group 3: tag assumptions

Violation of the tag model assumptions led to the worst performing models in this study. For the
model in which tag age was unknown (No_Age_Tag), bias levels were high with fishing
mortality being underestimated (MRE between -1 and -15), which caused biomass estimates to
be overestimated (MRE ranged from 3.5 to 14) and led to increased imprecision compared to the
Base scenario (Tables 4-5, Figures 1-2). Not accounting for incomplete mixing when it was
taking place (No_Tag_Mx) led to similar, but less extreme patterns in parameter bias and
precision as the No_Age_Tag scenario (population specific biomass MRE was between 9 and 13
with fishing mortality MRE ranging from -6 to -14; Tables 4-5, Figures 1-2). The Est_Tag_Mx
model was able to accurately estimate the scalars on fishing mortality (Fuix) and the new
movement rates for tagged fish in each year of release, which resulted in comparable parameter
bias to the Base scenario with only moderately increased imprecision (e.g., movement rate
MARE around 31; Tables 4-5, Figures 1-2). Ignoring incomplete mixing (i.e., the No_Tag_Mx
scenario) caused severe underestimates of fishing mortality in release years leading to

overestimation of biomass (Figure SM3). Conversely, when the model was allowed to estimate
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the scalar on fishing mortality (i.e., the Est_Tag_Mx scenario) to account for incomplete mixing,

the bias was removed (Figure SM3).

Group 4: life history

Both the short-lived (SL_Tag_Evy_5) and long-lived (LL_Tag_Evy_5) life history scenarios
performed similarly to the Base scenario (Figures 1-2). Although the short-lived scenario
actually demonstrated lower bias compared to the Base scenario for some parameters (e.g., MRE
in fishing mortality ranged from -1.77 to 2.2; Tables 4-5), it was unable to accurately estimate
movement rates demonstrating higher bias and imprecision (MRE ranged from 18.74 to 32.51
and MARE ranged from 30.81 to 33.17; Tables 4-5). The long-lived scenario had slightly
increased bias compared to the short-lived scenario, but precision was generally higher,

particularly in estimates of movement rates (MARE ranged from 18.83 to 22.88; Table 4).

Group 5: movement parametrization

Ignoring movement (No_Move) was detrimental to model performance leading to inaccurate
estimates of important parameters, including population-specific biomass (MRE ranging from -
6.5 for population one to 13.14 for population two; Table 4), particularly in the terminal year
(Figure 2); however, system-wide values tended to be relatively well estimated (e.g., biomass
MRE = 1.43 and recruitment MRE = 1.73; Tables 4-5, Figures 1-2). The constant movement
scenario (Cnst_Move) performed well with only slight increases in bias and imprecision

compared to the Base scenario (Tables 4-5, Figures 1-2).
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Comparison of relative tag program cost

Tagging every five years (i.e., the Base scenario) provided an adequate balance between a
relatively inexpensive tagging program (compared to annual tagging, Tag_Yrly) and low
resulting MARE for many population parameters compared to less resource intensive tagging
programs with fewer release events [e.g., tagging every ten years (Tag_Evy_10), tagging in only
one area (Tag_Area_2), or opportunistic tagging (Opp_Tag); Figure 4]. However, less intensive
and easier to implement (and maintain) tag designs, such as opportunistic tagging (Opp_Tag),

resulted in only a moderate increase in MARE with considerable cost savings.

4. Discussion

Modeling complex spatial dynamics in stock assessment models likely requires some form of
auxiliary information, such as tag-recovery data, to inform connectivity and adequately estimate
population trajectories. Previous spatially explicit tag-integrated simulation studies have focused
on tagging data quality and quantity (e.g., Hulson et al., 2011, 2013; Goethel et al., 2015b;
Vincent et al., 2017), but our results indicate that the frequency and distribution of tag releases
over time and space may be as important for achieving accurate and precise parameter estimates.
Longer time series of data inputs for an assessment, particularly tagging data, usually results in
improved model performance (Goethel et al., 2015b). However, in the case of collecting tagging
data, there are other factors (e.g., funding, weather, or availability of boat time) that may limit

the ability to release and recapture tagged fish every year and at all locations. Most tagging
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studies do not match the spatial extent of the population or the longevity of the species, because
they are typically financed by short-term grants. Given these common circumstances, our results
provide an exploration of tradeoffs among tagging design cost and the expected benefits in terms

of tag-integrated assessment model performance (Figure 4).

Our simulation scenarios were limited in their exploration of process error and spatiotemporal
complexity (including the form of underlying movement dynamics) resulting in uncertainty
estimates that are likely to be severely underestimated when compared to real world applications
of spatial assessment models (e.g., when connectivity and tagging occur across entire ocean
basins). Despite these caveats, there were a number of general results that are likely to be useful
in future applications of tag-integrated assessments. For instance, when tag releases were spread
across the assessment time series, the information content in tag recaptures improved parameter
estimates for the entire length of the assessment period. Tag releases were not required every
year, though, given that the Base model scenario, in which tagging occurred every five years,
demonstrated similar performance to more frequent tag release scenarios (e.g., annual tag
releases, Tag_Yrly). Performing periodic release events provides a tag recapture time series of
sufficient length to improve assessment outputs at a substantial cost savings over annual tagging
studies. These results also held across multiple life history types (e.g., short-, medium-, and long-

lived species) indicating some degree of generalization was possible.

Releasing tags opportunistically across both years and populations (Opp_Tag) provided accurate
parameter estimates at a substantially reduced cost of the tagging program compared to

traditional fixed tag release designs (due to releases not occurring in every population and
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potential release year). Although any tag study must still adhere to the major assumptions for
utilizing tagging data, these results indicate that tagging studies of limited scope (e.g., pilot
studies or opportunistic tagging as funding becomes available) could still provide useful data for
tag-integrated models. Similarly, tagging in only a single spatial unit (e.g., the Tag_Area_2
scenario) can also be informative. However, when there are spatial tag deployment limitations it
may be better to tag in the smaller, less productive population unit (see results for the
Tag_Area_2 scenario compared with those from the Tag_Area_1 scenario in the Supplementary
Material). By doing so, a stronger signal is provided regarding the emigration rates from and
fishing mortality on the less productive population. Information on the population trajectories of
less productive population units are important for spatial models, because signals in other data
sources (e.g., landings and age composition) are often inundated by the larger population

components (Goethel et al., 2015b; Vincent et al., 2017).

Short-term tagging studies (e.g., one time or clumped release events) provide bursts of
information to the assessment that help stabilize the model by reducing correlation among
movement and recruitment parameters (Goethel et al., 2015b; Cadrin et al., 2019). However,
results indicated that a better use of funding for tagging programs would be to spread release
events over a longer time period instead of implementing a limited number of release events in
consecutive years. For instance, the main reason that the opportunistic tagging study performed
well was because tag releases occurred across the time series, thereby providing information
from multiple periods compared to the brief, single period snapshots provided by short-term
studies. Given that many tag programs are funded by short-term grants, it may be difficult to

optimize release designs in this way. Ideally, complimenting survey data by conducting
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intermittent tag release programs as part of existing survey designs (e.g., as is done with Alaskan
sablefish; Hanselman et al., 2015) may produce the highest return on investment for funding
agencies and would provide much needed information on movement that surveys alone often
cannot provide. Identifying alternate data sources that can inform connectivity and be collected
as part of survey protocols (e.g., natural tags, genetic information, or otoliths), as was done for
South African sardine using parasite infestation rates (de Moor et al., 2017), provides a cost-
effective alternative to implementing tagging programs. However, there may be unaccounted for
costs (e.g., advertising) or impediments (e.g., time-varying reporting rate) to maintaining a
longer time series of recaptures, which were not addressed in this study and would need to be

considered for long-term periodic tagging programs.

Lack of tagging data (i.e., the No_Tag scenario) degraded performance compared to most of the
models that included some form of tagging information. However, population-specific parameter
estimates were still relatively unbiased. The main detriment was increased imprecision, which
corroborates earlier studies comparing tag-integrated and spatial models without tagging data
(e.g., Hulson et al., 2011; Goethel et al., 2015b). As discussed in depth in Goethel et al. (2015b)
and Cadrin et al. (2019), the primary issue with spatial models that lack tagging data is that
recruitment and movement parameters often become highly correlated. Although spatial models
without tagging information often outperform similar models that assume no movement (as was
the case when comparing the No_Move and No_Tag scenarios; Goethel et al., 2015b; McGilliard
et al., 2015; Punt, 2019a), results often depend on the existence of high quality age composition
data to inform movement parameter estimation in the spatial models. When age composition data

are of poor quality (e.g., the No_Tag_LQ scenario provided in the supplementary material),
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estimating the parameters of a spatial model without tagging data may be more detrimental than
ignoring movement, because there is increased probability of high estimation bias and model
instability (e.g., high parameter correlation leading to unrealistic outcomes). The benefit of age
composition data could also be seen in the life history runs where the short-lived life history
scenario had a more difficult time estimating movement rates compared to the medium- (i.e.,
Base) and long-lived scenarios. These estimation difficulties are believed to be partly due to the
relative lack of information contained in the condensed (i.e., fewer age classes) age compositions
available for short-lived species, but was also influenced by each cohort only experiencing on
average one tag release event (i.e., the average life span was four years, whereas the tag

frequency was every five years).

Mis-specifying movement parametrization (e.g., assuming constant movement when it is actually
time-varying) can be as detrimental as ignoring movement altogether or implicitly accounting for
spatial dynamics through areas-as-fleets models (Hulson et al., 2013; Goethel et al., 2015b; Lee
et al., 2017; Li et al., 2018). The constant movement (Cnst_Move) scenario in the current study
performed moderately well, albeit with strong cyclical bias in biomass. Because there was not a
strong trend over time in movement rates in the operating model, the constant movement model
was not penalized for its inability to estimate annual deviations in the movement rates.
Additionally, ignoring movement (e.g., the No_Move scenario) may lead to reasonable estimates
of total biomass, which suggests that panmictic assessments could also provide adequate domain
scale estimates (e.g., Li et al., 2015). However, the situations for which individual population

dynamics and connectivity could be ignored are likely to be limited given the potential for
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depletion of population components (Ying et al., 2011; Goethel et al., 2011; Guan et al., 2013;

Kerr et al., 2016; Punt et al., 2018).

Given the relatively simple simulated movement dynamics (i.e., time-varying without trend)
compared to the often complex ontogenetic patterns observed in real-world applications, the
results of this study are likely to be overly optimistic. For instance, if age-based movement
occurs, it is likely that estimating movement for long-lived species will be much more difficult
given the greatly increased number of movement parameters that would need to be estimated.
Therefore, future research should further investigate the feasibility of estimating more complex
movement dynamics with limited or no tagging information along with the associated bias from
ignoring age- and time-varying movement, given that connectivity dynamics are unlikely to be

static across either time or age.

The benefits of including tagging data in an assessment must be weighed against the increase in
the number of parameters to be estimated and the potential for violation of critical tagging
assumptions. For instance, in the scenarios where the age of tagged fish was unknown
(No_Age_Tag) or incomplete mixing was ignored (No_Tag_Mx), incorporating tagging data led
to biased models that often performed worse than not including any tagging data. These results
are important because many tagging studies do not have exact age at release information, and
homogenous mixing of tagged individuals across large-scale spatial domains is effectively
impossible. Additionally, it is difficult to fully verify or fulfill all of the assumptions of tag-
recovery data (e.g., that the dynamics of the tagged fish are representative of the general

population or that the age composition of tagged fish and the untagged population overlap
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appropriately; Ziegler, 2013). More research is also needed on best practices for incorporating
tagging data, particularly with regard to data weighting (Punt, 2017a) and accounting for over-
dispersion caused by non-independence of sampled (tagged) fish (i.e., using alternate likelihood

functions; Hanselman et al., 2015).

However, many tagging data assumptions can be directly accounted for by adjusting the
parametrization of tagging models. For instance, it is common practice for tagging models to
estimate tag mixing parameters (as was done in the Est_Tag_Mx scenario; e.g., Hoenig et al.,
1998; Hampton and Fournier, 2001; Waterhouse and Hoenig, 2011). External analyses can also
be performed to address tag mixing assumptions (e.g., Kolody and Hoyle, 2015) and tag
recaptures that are deemed to have been at-large for too short a time period to undergo full
mixing with non-tagged fish can be removed (e.g., Punt et al., 2000). Similarly, the bias
associated with the No_Age_Tag scenario is likely to be extreme, because information on the age
composition of tagged fish can often be derived by taking scale samples of all tagged fish or by
collecting otoliths of recaptured fish. The lengths of tagged fish can then be assigned to an age
class using age-length keys [as is done in MULTIFAN-CL (Hampton and Fournier, 2001) and
other applied tag-integrated models (e.g., Cadigan, 2016; ICES, 2017)], thereby avoiding the full
selection assumption of the No_Age_Tag scenario. Similarly, length data of tagged fish can be fit
directly without converting to age composition, but more work is needed to explore the
performance of tag-integrated models using only length data from tagged fish. In most cases, the
benefit gained from incorporating tagging data will outweigh potential pitfalls as long as the
critical assumptions are carefully considered and tag-integrated models are parametrized

accordingly
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There are considerable opportunities for incorporating underutilized spatially-explicit data sets,
which exist in many fisheries agencies (e.g., tag-recovery data, electronic tagging, genetics,
otolith microchemistry, or vessel monitoring system landings data), into integrated assessment
frameworks to inform complex spatial dynamics (Goethel et al., 2011; Berger et al., 2017; Li et
al., 2018). By matching the flexibility of integrated analysis with fine-scale spatial models, data
can be used at the scale at which they were collected (e.g., by implementing distribution models
within the assessment framework; Berger et al., 2017). A good deal remains to be learned about
the implementation and parametrization of spatial assessment models, yet tag-integrated
frameworks are clearly an informative option for representing complex real-world spatial
dynamics. The utility of spatial models depends on the goals of management and the importance
of understanding fine-scale dynamics for a given species (Berger et al., 2017; Punt et al,
2019a,b). Continued work is needed to identify robust management strategies when complex
spatiotemporal dynamics exist (e.g., Punt et al., 2017b). Despite the simplicity of the simulation
framework we applied (i.e., limited spatiotemporal complexity and process error, known natural
mortality and reporting rates, and perfect alignment of biological and assessment units), our
results provide insights into the importance of accounting for spatial population structure in
assessment models and the role that tagging data, even when collected at limited spatiotemporal
scales, can have for informing connectivity patterns and improving population-specific

parameter estimates from spatially-explicit models.
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7. Tables

Table 1. Uncertainty associated with each data set used to simulate observation error in the

simulation model and input as data weights in the estimation models (including effective sample

size (ESS) for age composition and tagging data). The variance levels used to simulate

recruitment deviations in the operating model and subsequently used to penalize deviations from

average recruitment in the estimation model are also provided. ESS and variance ( ¢ ) are

constant across years, while tagging ESS is also constant across cohorts (i.e., each tagged cohort

has the same ESS). Models without tagging data use the same weighting, but have no tagging

component.
Data component Distribution Parameter Base settings
Population 1 Population 2

Fishery age composition Multinomial ESS 150. 150.
Fishery yield Lognormal o 0.05 0.05
Survey age composition Multinomial ESS 150. 150.
Survey biomass index  Lognormal o 0.2 0.2
Tagging data Multinomial ESS 200. 200.
Recruitment variance Lognormal o 0.55 0.5
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Table 2. Operating model assumptions and inputs for the tagging sub-model. Descriptions are

provided for the Base model scenario. Models that differ from the Base scenario settings in terms

of operating model assumptions are denoted by a ( * ), whereas those differing in the estimation

model assumptions are denoted by a ( * ). Scenario names are provided in Table 3.

Tag component

Base settings

Models with alternate settings

Total number of tag releases per year
Population distribution

Age distribution of tags

Frequency of tagging

Tag lifespan
Tag mixing

5,000
Proportional to survey abundance
Proportional to survey age compositions

Every five years

Five years
Fully mixed

Tag_Opp "

Tag Opp ™, Tag_Area 2"
No_Age_Tag*

No_Tag", Tag Yrly™, Tag_evy_10"

>

Tag_Beg 5", Tag_Mid_5", Tag_End_5",

No_Tag_Mx ", Est_Tag_Mx "*
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926

927

928

OM indicates the operating model and EM represents the estimation model.

Table 3. Description of simulation scenarios, associated scenario abbreviations, critical model assumptions, and convergence rates.

Simulation group Scenario name  Tag design (OM) Tag assumptions Movement parametrization ~ Other notes Convergence
(EM) rate
Tag time series Base Tag every 5 years Match OM Estimate in 2 year time blocks 0.980
(Group 1) No_Tag No tagging Match OM Estimate in 2 year time blocks Spatial model with no tagging 1.000
Tag_Yrly Tag every year Match OM Estimate in 2 year time blocks 0.990
Tag_Evy_10 Tag every 10 years Match OM Estimate in 2 year time blocks 0.990
Tag_Beg 5 Tag during the first 5 years Match OM Estimate in 2 year time blocks 1.000
Tag_Mid_5 Tag during the middle 5 years ~ Match OM Estimate in 2 year time blocks 1.000
Tag_End_5 Tag during the terminal 5 years Match OM Estimate in 2 year time blocks 0.990
Tag deployment Opp_Tag Tag opportunistically by Match OM Estimate in 2 year time blocks The probability of a tag event occurring is 1.000
(Group 2) population and year determined by a series of independent Bernouilli
and uniform distributions (see Table 3)
Tag Area_2 Tag only in population 2 every 5 Match OM Estimate in 2 year time blocks 1.000
years
Tag assumptions No_Age_Tag  Tagevery5 years Do not fit age-based Estimate in 2 year time blocks EM assumes no information on age of tagged fish  1.000
(Group 3) cohorts
No_Tag_Mx Tagevery 5 years, assume Ignore incomplete  Estimate in 2 year time blocks Movement and F differ for tagged fish in year of ~ 1.000
incomplete mixing of tags mixing tag release in OM, EM assumes complete mixing
Est Tag_Mx Tagevery 5 years, assume Estimate incomplete Estimate in 2 year time blocks Movement and F differ for tagged fish in year of ~ 1.000
incomplete mixing of tags mixing rates release in OM, EM estimates these parameters
Life History LL_Tag Evy 5 Tagevery$ years Match OM Estimate in 2 year time blocks Long-lived life history (16 ages) 1.000
(Group 4) SL_Tag_Evy_5 Tagevery5 years Match OM Estimate in 2 year time blocks Short-lived life history (4 ages) 0.890
Movement No_Move No tagging Match OM No movement estimated OM includes movement among populations, but ~ 1.000
parametrization EM assumes two closed populations
(Group 5) Cnst_Move Tagevery 5 years Match OM Estimate constant movement 0.990
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929  Table 4. Mean relative error (MRE) aggregated across all years for important population parameters. Scenario names are from Table
930 3. System values for biomass and recruitment represent the MRE aggregated across populations. Values for the movement parameters
931 represent the MRE for the estimated movement rates (i.e., emigration not residency). An NA indicates that the value was not estimated

932  in the given scenario.

933
Simulation group Scenario name Biomass Fishing Mortality Recruitment Movement
Population 1 Population 2 System Population 1 Population 2 Population 1 Population 2 System Population 1to 2 Population 2to 1
Tag time series Base 0.61 0.39 0.33 7.05 1.48 1.86 7.16 0.76 6.71 549
(Group 1) No_Tag -1.36 2.96 0.3 14.63 0.01 1.07 17.07 087 71.78 74.86
Tag_Yrly 0.67 0.11 0.26 7.96 1.88 0.9 7.73 0.73 5.7 6.3
Tag_Evy_10 0.23 0.52 0.19 9.17 1.37 4.04 6.79 065 21.11 23.36
Tag_Beg_5 0.1 0.85 0.23 947 0.65 10.09 -1.22 0.86  42.03 39.08
Tag_Mid_5 0.35 0.62 0.28 8.69 1.0 8.11 4.64 0.84  40.14 42.45
Tag_End_5 -0.47 1.75 028 1093 -0.42 717 5.74 0.8 53.84 57.23
Tag deployment Opp_Tag 0.07 1.07 032 10.62 0.64 5.57 6.51 0.85 2511 30.47
(Group 2) Tag_Area_2 -0.87 2.65 045 1138 -04 -4.22 18.19 1.04 -3.07 1.67
Tag assumptions No_Age_Tag 3.49 14.3 782 -091 -14.76 -2.34 31.77 632 145 16.14
(Group 3) No_Tag_Mx 8.7 12.8 1009  -5.99 -14.04 11.12 12.8 6.9 -9.03 -13.17
Est_Tag_Mx 0.14 1.9 0.74 747 -0.21 1.0 10.57 1.15 1.38 5.05
Life History SL _Tag_Evy_ 5 047 1.1 0.03 22 -1.77 5.79 -1.82 021 3251 18.74
(Group 4) LL Tag_Evy 5 08 1.2 0.76 4.96 39 3.81 521 0.68 7.54 5.75
Movement No_Move -6.54 13.14 143 20.57 -12.19 -2.76 3258 173 NA NA
parametrization Cnst_Move 2.34 -1.85 0.1 5.05 4.16 7.81 -0.11 057 161 6.67
(Group 5)
934
935
936
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937  Table 5. Median absolute relative error (MARE) aggregated across all years for important population parameters. Scenario names are
938  from Table 3. System values for biomass and recruitment represent the MARE aggregated across populations. Values for the
939  movement parameters represent the MARE for the estimated movement rates (i.e., emigration not residency). An NA indicates that the

940  value was not estimated in the given scenario.

941
Simulation group Scenario name Biomass Fishing Mortality Recruitment Movement
Population 1 Population 2 System Population 1 Population 2 Population 1 Population 2 System Population 1to 2 Population 2 to 1
Tag time series Base 329 4.63 1.47 7.32 6.09 9.37 12.94 317 2193 25.52
(Group 1) No_Tag 5.23 8.57 1.88  13.67 10.81 14.99 22.96 339 7205 91.04
Tag_Yrly 2.95 4.17 1.42 8.26 5.58 8.58 11.16 316 20.04 20.5
Tag_Evy_ 10 3.85 5.75 1.57 8.95 7.53 10.99 15.82 324 33.06 38.98
Tag_Beg 5 431 6.62 1.63 9.29 8.56 11.7 17.99 331 5198 55.39
Tag_Mid_5 4.05 6.03 1.65 89 7.76 11.04 15.63 329 4837 57.48
Tag_End_5 4.0 5.89 1.53  10.17 7.81 12.08 17.48 32 54.76 69.15
Tag deployment Opp_Tag 422 6.14 1.65 1048 7.98 11.48 16.65 331 4434 46.62
(Group 2) Tag_Area_2 4.06 5.94 1.62 1127 6.78 11.32 16.52 328 3492 26.57
Tag assumptions No_Age_Tag 542 13.12 6.35 6.8 15.64 1447 26.5 4.7 40.99 39.2
(Group 3) No_Tag_Mx 6.97 12.24 8.38 8.09 15.05 11.13 15.33 486 324 47.73
Est_Tag_Mx 3.53 5.14 1.59 7.8 6.58 10.1 14.46 325 31.14 31.79
Life History SL Tag_Evy_ 5 3.74 5.37 2.11 5.53 7.59 9.34 13.13 35 33.17 30.81
(Group 4) LL Tag_Evy_5 3.33 4.18 1.26 5.82 5.94 10.6 15.24 321 1883 22.88
Movement No_Move 6.82 12.11 206 1997 12.87 14.98 2341 34 NA NA
parametrization Cnst_Move 3.93 5.72 1.48 7.01 742 11.74 17.96 3.18 2839 23.62
(Group 5)
942
943
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944 8. Figures

945

946  Figure 1. Violin plots illustrating the distribution of percent relative error in biomass, recruitment, fishing mortality, and movement by population
947  for all runs within each scenario and across all years in the assessment time series. Overlaid boxplots provide the interquartile range and median
948  (line). Points are the mean values. The vertical dashed line represents zero bias. Scenario names are explained in Table 3.
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950  Figure 2. Violin plots illustrating the terminal year (year 30) distribution of percent relative error in biomass, recruitment, fishing mortality, and
951 movement by population for all runs within each scenario. Overlaid boxplots provide the interquartile range and median (line). Points are the
952  mean values. The vertical dashed line represents zero bias. Scenario names are explained in Table 3.
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959

Figure 3. Time series plots illustrating the distribution (violin plots) of movement (left panel), recruitment (middle panel), and fishing mortality
(right panel) parameters for population one across several tag time series scenarios. Points represent the annual median estimate across all of the
converged models. The line represents the operating model true value. For the movement plot, the black fill and points represent residency in
population one (higher proportions in each plot), whereas the grey fill and points represent movement rates to population two (lower proportions
in each plot). Scenario names are provided above each plot and are described in Table 3.
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960  Figure 4. The approximate relative cost of a simulated tagging design plotted against the resulting median absolute relative error (MARE)

961  aggregated across years for important population-specific parameters. Relative cost is estimated based on the frequency of tagging, the number of
962  tags released, and the spatial distribution of tagging. Point labels provide the scenario name as described in Table 3. The results for the Base

963  scenario and the scenario that does not include tagging data are highlighted with black label fill. Note that the x-axis scales differ by panel.
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